2D-2D heterojunction engineering for enhanced photothermal CO2 reduction: synergistic effect of deprotonation and LSPR on Ultrathin BiOI/Ti3C2 nanosheets

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tongtong Li , Ran Tao , Dongke Li , Dabo Liu , Sainan Zhou , Zhenming Chu , Xiaoxing Fan
{"title":"2D-2D heterojunction engineering for enhanced photothermal CO2 reduction: synergistic effect of deprotonation and LSPR on Ultrathin BiOI/Ti3C2 nanosheets","authors":"Tongtong Li ,&nbsp;Ran Tao ,&nbsp;Dongke Li ,&nbsp;Dabo Liu ,&nbsp;Sainan Zhou ,&nbsp;Zhenming Chu ,&nbsp;Xiaoxing Fan","doi":"10.1016/j.apsusc.2025.164131","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the shortage of protons and electrons in carbon dioxide (CO<sub>2</sub>) reduction experiments, the current catalytic process is facing efficiency issues. This study synthesized Ti<sub>3</sub>C<sub>2</sub> Mxene through etching and ultrasonic exfoliation, and integrated BiOI nanosheets with Ti<sub>3</sub>C<sub>2</sub> using solvothermal method to create a 2D/2D BiOI/Ti<sub>3</sub>C<sub>2</sub> Schottky heterojunction. The oxygen vacancies in BiOI capture water molecules for deprotonation, providing sufficient protons for photocatalytic CO<sub>2</sub> reduction reactions. Due to the formation of 2D/2D Schottky heterojunctions, utilizing large heterojunction interfaces and short carrier migration paths facilitates charge separation and transfer, thereby improving the charge separation efficiency at heterojunction interfaces. In addition, the localized surface plasmon resonance (LSPR) effect of Ti<sub>3</sub>C<sub>2</sub> enhances catalytic activity by promoting the generation of hot electrons and converting light energy into thermal energy, thereby generating a photothermal synergistic effect. Under simulated sunlight, BiOI/Ti<sub>3</sub>C<sub>2</sub> nanosheets significantly improved the photocatalytic CO<sub>2</sub> reduction efficiency, producing 4.8 times and 5.3 times more carbon monoxide (CO) than using BiOI and Ti<sub>3</sub>C<sub>2</sub> alone. After three cycles of experiments, the catalytic performance of the composite material remains stable, and the loss can be ignored. These findings provide valuable insights into catalyst design for future CO<sub>2</sub> reduction applications.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"712 ","pages":"Article 164131"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016943322501846X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the shortage of protons and electrons in carbon dioxide (CO2) reduction experiments, the current catalytic process is facing efficiency issues. This study synthesized Ti3C2 Mxene through etching and ultrasonic exfoliation, and integrated BiOI nanosheets with Ti3C2 using solvothermal method to create a 2D/2D BiOI/Ti3C2 Schottky heterojunction. The oxygen vacancies in BiOI capture water molecules for deprotonation, providing sufficient protons for photocatalytic CO2 reduction reactions. Due to the formation of 2D/2D Schottky heterojunctions, utilizing large heterojunction interfaces and short carrier migration paths facilitates charge separation and transfer, thereby improving the charge separation efficiency at heterojunction interfaces. In addition, the localized surface plasmon resonance (LSPR) effect of Ti3C2 enhances catalytic activity by promoting the generation of hot electrons and converting light energy into thermal energy, thereby generating a photothermal synergistic effect. Under simulated sunlight, BiOI/Ti3C2 nanosheets significantly improved the photocatalytic CO2 reduction efficiency, producing 4.8 times and 5.3 times more carbon monoxide (CO) than using BiOI and Ti3C2 alone. After three cycles of experiments, the catalytic performance of the composite material remains stable, and the loss can be ignored. These findings provide valuable insights into catalyst design for future CO2 reduction applications.

Abstract Image

Abstract Image

增强光热CO2还原的2D-2D异质结工程:去质子化和LSPR对超薄BiOI/Ti3C2纳米片的协同效应
由于二氧化碳还原实验中质子和电子的缺乏,目前的催化过程面临着效率问题。本研究通过刻蚀和超声剥离合成Ti3C2 Mxene,并采用溶剂热法将BiOI纳米片与Ti3C2集成,形成2D/2D BiOI/Ti3C2肖特基异质结。BiOI中的氧空位捕获水分子进行去质子化,为光催化CO2还原反应提供足够的质子。由于2D/2D肖特基异质结的形成,利用较大的异质结界面和较短的载流子迁移路径有利于电荷的分离和转移,从而提高了异质结界面处的电荷分离效率。此外,Ti3C2的局域表面等离子体共振(LSPR)效应通过促进热电子的生成,将光能转化为热能,从而产生光热协同效应,从而增强了催化活性。在模拟阳光下,BiOI/Ti3C2纳米片显著提高了光催化CO2还原效率,产生的一氧化碳(CO)分别是单独使用BiOI和Ti3C2的4.8倍和5.3倍。经过三次循环实验,复合材料的催化性能保持稳定,损失可以忽略不计。这些发现为未来二氧化碳还原应用的催化剂设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信