{"title":"Surface-Modified Nanozymes for Enhanced and Selective Catalysis.","authors":"Xinghua Chen,Itamar Willner","doi":"10.1021/acsami.5c07647","DOIUrl":null,"url":null,"abstract":"Surface-modified catalytic nanoparticles (nanozymes) are introduced as hybrid nanoparticles overcoming basic limitations associated with bare nanozymes that include moderate catalytic turnovers, lack of substrate selectivity and chiroselectivity, and poor or nonselective permeabilities into biomembrane. This review introduces aptamer-modified nanozymes, receptor (cyclodextrins)- or ligand (amino acids, peptides)-functionalized catalytic nanoparticles, and molecularly imprinted polymer-coated nanozymes as hybrid frameworks improving the catalytic properties and selective/chiroselective functions of the nanozymes. Binding of the reaction substrates to the aptamers, ligands, or molecular-imprinted sites, by affinity interactions, concentrates the substrates in spatial proximity to the nanozyme catalytic sites (\"molarity effect\"), thereby enhancing the catalytic performance of the frameworks. Specific and chiroselective binding interactions of the substrates to the surface modifiers lead to selective or chiroselective chemical transformations. Moreover, by appropriate molecular engineering of the surface modifiers on the nanozymes, catalytic functions lacking in the parent bare nanozymes are demonstrated. Potential applications of surface-modified nanozymes are discussed.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"25 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c07647","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-modified catalytic nanoparticles (nanozymes) are introduced as hybrid nanoparticles overcoming basic limitations associated with bare nanozymes that include moderate catalytic turnovers, lack of substrate selectivity and chiroselectivity, and poor or nonselective permeabilities into biomembrane. This review introduces aptamer-modified nanozymes, receptor (cyclodextrins)- or ligand (amino acids, peptides)-functionalized catalytic nanoparticles, and molecularly imprinted polymer-coated nanozymes as hybrid frameworks improving the catalytic properties and selective/chiroselective functions of the nanozymes. Binding of the reaction substrates to the aptamers, ligands, or molecular-imprinted sites, by affinity interactions, concentrates the substrates in spatial proximity to the nanozyme catalytic sites ("molarity effect"), thereby enhancing the catalytic performance of the frameworks. Specific and chiroselective binding interactions of the substrates to the surface modifiers lead to selective or chiroselective chemical transformations. Moreover, by appropriate molecular engineering of the surface modifiers on the nanozymes, catalytic functions lacking in the parent bare nanozymes are demonstrated. Potential applications of surface-modified nanozymes are discussed.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.