Alkali Metal Cations Impact the Selectivity of Radical-Mediated Electrochemical C─H Chlorination.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Wu,Ruihu Lu,Tenghui Yuan,Beijing Cai,Bingqing Wang,Bote Zhao,Shibo Xi,Ziyun Wang,Yanwei Lum
{"title":"Alkali Metal Cations Impact the Selectivity of Radical-Mediated Electrochemical C─H Chlorination.","authors":"Bo Wu,Ruihu Lu,Tenghui Yuan,Beijing Cai,Bingqing Wang,Bote Zhao,Shibo Xi,Ziyun Wang,Yanwei Lum","doi":"10.1002/anie.202509115","DOIUrl":null,"url":null,"abstract":"Electrochemistry offers a promising route toward facilitating organic transformation reactions in a sustainable manner. However, there are often a multitude of factors at play; hence, it can be unclear how operating conditions can be rationally tuned to optimize selectivity. Here, we demonstrate how the identity of alkali metal cations in the electrolyte can control the selectivity of electrochemical C─H chlorination. Specifically, we obtained a 90.3% Faradaic efficiency with KCl as compared to 78.4% with LiCl for the conversion of cyclohexane to chlorocyclohexane at 1000 mA using an IrOx electrode. Electron paramagnetic resonance spectroscopy experiments indicate a greater propensity for Cl- oxidation to generate Cl radicals in the order: K+ > Na+ > Li+. This leads to an increase in the selectivity toward the chlorination of cyclohexane and a concomitant decrease in competitive Cl2 formation. Density functional theory calculations and in situ Raman spectroscopy experiments indicate that this is likely due to a decrease in *Cl binding energy on IrOx in the presence of K+. These findings highlight the important role of alkali metal cations, which can be a key consideration for designing electrochemical organic synthesis systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"15 1","pages":"e202509115"},"PeriodicalIF":16.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202509115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemistry offers a promising route toward facilitating organic transformation reactions in a sustainable manner. However, there are often a multitude of factors at play; hence, it can be unclear how operating conditions can be rationally tuned to optimize selectivity. Here, we demonstrate how the identity of alkali metal cations in the electrolyte can control the selectivity of electrochemical C─H chlorination. Specifically, we obtained a 90.3% Faradaic efficiency with KCl as compared to 78.4% with LiCl for the conversion of cyclohexane to chlorocyclohexane at 1000 mA using an IrOx electrode. Electron paramagnetic resonance spectroscopy experiments indicate a greater propensity for Cl- oxidation to generate Cl radicals in the order: K+ > Na+ > Li+. This leads to an increase in the selectivity toward the chlorination of cyclohexane and a concomitant decrease in competitive Cl2 formation. Density functional theory calculations and in situ Raman spectroscopy experiments indicate that this is likely due to a decrease in *Cl binding energy on IrOx in the presence of K+. These findings highlight the important role of alkali metal cations, which can be a key consideration for designing electrochemical organic synthesis systems.
碱金属阳离子对自由基介导的电化学C─H氯化选择性的影响。
电化学为以可持续的方式促进有机转化反应提供了一条有前途的途径。然而,通常有许多因素在起作用;因此,如何合理地调整操作条件以优化选择性是不清楚的。在这里,我们证明了电解质中碱金属阳离子的特性如何控制电化学C─H氯化的选择性。具体来说,我们获得了KCl的90.3%的法拉第效率,而使用LiCl的法拉第效率为78.4%,在1000 mA下使用IrOx电极将环己烷转化为氯环己烷。电子顺磁共振波谱实验表明,Cl-氧化更倾向于生成Cl自由基,其顺序为:K+ > Na+ > Li+。这导致环己烷氯化的选择性增加,同时竞争性Cl2的形成减少。密度泛函理论计算和原位拉曼光谱实验表明,这可能是由于K+存在时IrOx上*Cl结合能的降低。这些发现突出了碱金属阳离子的重要作用,它可以成为设计电化学有机合成系统的关键考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信