Digital FDG-PET detects MYD88 mutation-driven glycolysis in primary central nervous system lymphoma.

Mayu Sasaki, Yuri Teraoka, Ayumi Kato, Tadaaki Nakajima, Yoshinobu Ishiwata, Yohei Miyake, Hirokuni Honma, Taishi Nakamura, Naoki Ikegaya, Yutaro Takayama, Osamu Yazawa, Shungo Sawamura, Akito Oshima, Hiroaki Hayashi, Wei Kai Ye, Kanoko Sasaoka, Yukie Yoshii, Satoshi Fujii, Ukihide Tateishi, Tetsuya Yamamoto, Daisuke Utsunomiya, Shingo Kato, Kensuke Tateishi
{"title":"Digital FDG-PET detects <i>MYD88</i> mutation-driven glycolysis in primary central nervous system lymphoma.","authors":"Mayu Sasaki, Yuri Teraoka, Ayumi Kato, Tadaaki Nakajima, Yoshinobu Ishiwata, Yohei Miyake, Hirokuni Honma, Taishi Nakamura, Naoki Ikegaya, Yutaro Takayama, Osamu Yazawa, Shungo Sawamura, Akito Oshima, Hiroaki Hayashi, Wei Kai Ye, Kanoko Sasaoka, Yukie Yoshii, Satoshi Fujii, Ukihide Tateishi, Tetsuya Yamamoto, Daisuke Utsunomiya, Shingo Kato, Kensuke Tateishi","doi":"10.3174/ajnr.A8935","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>The relationship between digital <sup>18</sup>F-fluorodeoxyglucose positron emission tomography (dFDG-PET) findings and glucose metabolism-related genetic alterations remains unclear in primary central nervous system lymphoma (PCNSL). This study aimed to evaluate whether dFDG-PET can serve as a noninvasive tool to detect <i>MYD88</i> mutation-driven glycolytic activity in PCNSL.</p><p><strong>Materials and methods: </strong>We retrospectively analyzed the imaging and molecular data of 54 patients with PCNSL (55 lesions). MRI and FDG-PET parameters, including the maximum standardized uptake value (SUVmax) and tumor-to-background ratio (TBR), were assessed. Tumor specimens were subjected to histopathological and genomic evaluations, including the <i>MYD88</i> mutation status.</p><p><strong>Results: </strong>Among 55 tumors, 34 (61.8%) were examined with dFDG-PET and 21 (38.2%) with analog <sup>18</sup>F-FDG-PET (aFDG-PET). In the dFDG-PET group, <i>MYD88</i>-mutant tumors showed significantly higher SUVmax (30.2 ± 9.9) and TBR (6.1 ± 1.5) compared to wild-type tumors (SUVmax: 19.3 ± 7.2, <i>P</i> = 0.006; TBR: 3.5 ± 1.3, <i>P</i> < 0.001). In the aFDG-PET group, the SUVmax was significantly higher in <i>MYD88</i>-mutant tumors (<i>P</i> = 0.01), whereas the TBR differences were not statistically significant (<i>P</i> = 0.38). Receiver operating characteristic analysis of TBR in dFDG-PET yielded an area under the curve of 0.913 (95% CI: 0.954-1.000) with a cutoff value of 4.49, achieving 88% sensitivity and 88% specificity for <i>MYD88</i> mutation detection. Multivariate logistic regression identified SUVmax and TBR from dFDG-PET as independent predictors of <i>MYD88</i> mutation status. The transcriptomic analysis confirmed the significant upregulation of glycolysis-related genes, including <i>hexokinase 2</i>, in <i>MYD88</i>-mutant tumors, supporting increased glycolytic activity.</p><p><strong>Conclusions: </strong>dFDG-PET may serve as a valuable noninvasive imaging modality to detect <i>MYD88</i> mutation-driven enhanced glycolysis in patients with PCNSL.</p><p><strong>Abbreviations: </strong>dPET= Digital positron emission tomography; PCNSL= Primary central nervous system lymphoma; SUVmax=maximum standardized uptake value; TBR= tumor-to background ratio.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: The relationship between digital 18F-fluorodeoxyglucose positron emission tomography (dFDG-PET) findings and glucose metabolism-related genetic alterations remains unclear in primary central nervous system lymphoma (PCNSL). This study aimed to evaluate whether dFDG-PET can serve as a noninvasive tool to detect MYD88 mutation-driven glycolytic activity in PCNSL.

Materials and methods: We retrospectively analyzed the imaging and molecular data of 54 patients with PCNSL (55 lesions). MRI and FDG-PET parameters, including the maximum standardized uptake value (SUVmax) and tumor-to-background ratio (TBR), were assessed. Tumor specimens were subjected to histopathological and genomic evaluations, including the MYD88 mutation status.

Results: Among 55 tumors, 34 (61.8%) were examined with dFDG-PET and 21 (38.2%) with analog 18F-FDG-PET (aFDG-PET). In the dFDG-PET group, MYD88-mutant tumors showed significantly higher SUVmax (30.2 ± 9.9) and TBR (6.1 ± 1.5) compared to wild-type tumors (SUVmax: 19.3 ± 7.2, P = 0.006; TBR: 3.5 ± 1.3, P < 0.001). In the aFDG-PET group, the SUVmax was significantly higher in MYD88-mutant tumors (P = 0.01), whereas the TBR differences were not statistically significant (P = 0.38). Receiver operating characteristic analysis of TBR in dFDG-PET yielded an area under the curve of 0.913 (95% CI: 0.954-1.000) with a cutoff value of 4.49, achieving 88% sensitivity and 88% specificity for MYD88 mutation detection. Multivariate logistic regression identified SUVmax and TBR from dFDG-PET as independent predictors of MYD88 mutation status. The transcriptomic analysis confirmed the significant upregulation of glycolysis-related genes, including hexokinase 2, in MYD88-mutant tumors, supporting increased glycolytic activity.

Conclusions: dFDG-PET may serve as a valuable noninvasive imaging modality to detect MYD88 mutation-driven enhanced glycolysis in patients with PCNSL.

Abbreviations: dPET= Digital positron emission tomography; PCNSL= Primary central nervous system lymphoma; SUVmax=maximum standardized uptake value; TBR= tumor-to background ratio.

数字FDG-PET检测原发性中枢神经系统淋巴瘤中MYD88突变驱动的糖酵解。
背景与目的:数字18f -氟脱氧葡萄糖正电子发射断层扫描(dFDG-PET)结果与原发性中枢神经系统淋巴瘤(PCNSL)中葡萄糖代谢相关遗传改变的关系尚不清楚。本研究旨在评估dFDG-PET是否可以作为检测PCNSL中MYD88突变驱动的糖酵解活性的无创工具。材料和方法:回顾性分析54例PCNSL(55个病变)的影像学和分子资料。评估MRI和FDG-PET参数,包括最大标准化摄取值(SUVmax)和肿瘤与背景比(TBR)。肿瘤标本进行组织病理学和基因组评估,包括MYD88突变状态。结果:55例肿瘤中,dFDG-PET检查34例(61.8%),类似物18F-FDG-PET (aFDG-PET)检查21例(38.2%)。在dFDG-PET组中,myd88突变型肿瘤的SUVmax(30.2±9.9)和TBR(6.1±1.5)明显高于野生型肿瘤(SUVmax: 19.3±7.2,P = 0.006;Tbr: 3.5±1.3,p < 0.001)。在aFDG-PET组中,myd88突变肿瘤的SUVmax显著升高(P = 0.01),而TBR差异无统计学意义(P = 0.38)。dFDG-PET中TBR的受试者工作特征分析曲线下面积为0.913 (95% CI: 0.954-1.000),截止值为4.49,检测MYD88突变的灵敏度为88%,特异性为88%。多元逻辑回归发现,dFDG-PET的SUVmax和TBR是MYD88突变状态的独立预测因子。转录组学分析证实了myd88突变肿瘤中糖酵解相关基因(包括己糖激酶2)的显著上调,支持糖酵解活性的增加。结论:dFDG-PET可作为一种有价值的无创成像方式,用于检测PCNSL患者MYD88突变驱动的糖酵解增强。缩写:dPET=数字正电子发射断层扫描;PCNSL=原发性中枢神经系统淋巴瘤;SUVmax=最大标准化摄取值;TBR=肿瘤与背景比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信