{"title":"Evaluation of Deep Learning Methods for Pulmonary Disease Classification.","authors":"Ajay Pal Singh, Ankita Nigam, Gaurav Garg","doi":"10.2174/0115734056388107250710120917","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Driven by environmental pollution and the rise in infectious diseases, the increasing prevalence of lung conditions demands advancements in diagnostic techniques.</p><p><strong>Materials and methods: </strong>This study explores the use of various features, such as spectrograms, chromograms, and Mel Frequency Cepstral Coefficients (MFCC), to extract crucial information from auscultation recordings. It addresses challenges through filter-based audio enhancement methods. The primary goal is to improve disease detection accuracy by leveraging convolutional neural networks (CNNs) for feature extraction and dense neural networks for classification.</p><p><strong>Results: </strong>While deep learning models like CNNs and Recurrent Neural Network (RNN) outperform traditional machine learning models such as Sequence Vector Machine, K-Nearest Neighbours (KNN) and random forest with accuracies ranging from 70% to 85%. The combination of CNN, RNN, and long short-term memory achieved an accuracy of 88%. By integrating MFCC, Chroma Short-Term Fourier Transform (STFT), and spectrogram features with a CNN-based classifier, the proposed multi-feature deep learning model achieved the highest accuracy of 92%, surpassing all other methods.</p><p><strong>Discussion: </strong>The study effectively addresses key issues, including the overrepresentation of Chronic Obstructive Pulmonary Disease (COPD) samples over Lower Respiratory Tract Infections (LRTI) and Upper Respiratory Tract Infections (URTI) which hampers generalization across test audio samples.</p><p><strong>Conclusion: </strong>The proposed methodology caters common challenges like background noise in recordings, and the limited and imbalanced nature of datasets. These findings pave the way for enhanced clinical applications, showcasing the transformative potential of multi-feature deep learning methods in the classification of pulmonary diseases.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056388107250710120917","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Driven by environmental pollution and the rise in infectious diseases, the increasing prevalence of lung conditions demands advancements in diagnostic techniques.
Materials and methods: This study explores the use of various features, such as spectrograms, chromograms, and Mel Frequency Cepstral Coefficients (MFCC), to extract crucial information from auscultation recordings. It addresses challenges through filter-based audio enhancement methods. The primary goal is to improve disease detection accuracy by leveraging convolutional neural networks (CNNs) for feature extraction and dense neural networks for classification.
Results: While deep learning models like CNNs and Recurrent Neural Network (RNN) outperform traditional machine learning models such as Sequence Vector Machine, K-Nearest Neighbours (KNN) and random forest with accuracies ranging from 70% to 85%. The combination of CNN, RNN, and long short-term memory achieved an accuracy of 88%. By integrating MFCC, Chroma Short-Term Fourier Transform (STFT), and spectrogram features with a CNN-based classifier, the proposed multi-feature deep learning model achieved the highest accuracy of 92%, surpassing all other methods.
Discussion: The study effectively addresses key issues, including the overrepresentation of Chronic Obstructive Pulmonary Disease (COPD) samples over Lower Respiratory Tract Infections (LRTI) and Upper Respiratory Tract Infections (URTI) which hampers generalization across test audio samples.
Conclusion: The proposed methodology caters common challenges like background noise in recordings, and the limited and imbalanced nature of datasets. These findings pave the way for enhanced clinical applications, showcasing the transformative potential of multi-feature deep learning methods in the classification of pulmonary diseases.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.