{"title":"Multidisciplinary Evaluation of an AI-Based Pneumothorax Detection Model: Clinical Comparison with Physicians in Edge and Cloud Environments.","authors":"Ismail Dal, Hasan Burak Kaya","doi":"10.2147/JMDH.S535405","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate and timely detection of pneumothorax on chest radiographs is critical in emergency and critical care settings. While subtle cases remain challenging for clinicians, artificial intelligence (AI) offers promise as a diagnostic aid. This retrospective diagnostic accuracy study evaluates a deep learning model developed using Google Cloud Vertex AI for pneumothorax detection on chest X-rays.</p><p><strong>Methods: </strong>A total of 152 anonymized frontal chest radiographs (76 pneumothorax, 76 normal), confirmed by computed tomography (CT), were collected from a single center between 2023 and 2024. The median patient age was 50 years (range: 18-95), with 67.1% male. The AI model was trained using AutoML Vision and evaluated in both cloud and edge deployment environments. Diagnostic accuracy metrics-including sensitivity, specificity, and F1 score-were compared with those of 15 physicians from four specialties (general practice, emergency medicine, thoracic surgery, radiology), stratified by experience level. Subgroup analysis focused on minimal pneumothorax cases. Confidence intervals were calculated using the Wilson method.</p><p><strong>Results: </strong>In cloud deployment, the AI model achieved an overall diagnostic accuracy of 0.95 (95% CI: 0.83, 0.99), sensitivity of 1.00 (95% CI: 0.83, 1.00), specificity of 0.89 (95% CI: 0.69, 0.97), and F1 score of 0.95 (95% CI: 0.86, 1.00). Comparable performance was observed in edge mode. The model outperformed junior clinicians and matched or exceeded senior physicians, particularly in detecting minimal pneumothoraces, where AI sensitivity reached 0.93 (95% CI: 0.79, 0.97) compared to 0.55 (95% CI: 0.38, 0.69) - 0.84 (95% CI: 0.69, 0.92) among human readers.</p><p><strong>Conclusion: </strong>The Google Cloud Vertex AI model demonstrates high diagnostic performance for pneumothorax detection, including subtle cases. Its consistent accuracy across edge and cloud settings supports its integration as a second reader or triage tool in diverse clinical workflows, especially in acute care or resource-limited environments.</p>","PeriodicalId":16357,"journal":{"name":"Journal of Multidisciplinary Healthcare","volume":"18 ","pages":"4099-4111"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278965/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JMDH.S535405","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accurate and timely detection of pneumothorax on chest radiographs is critical in emergency and critical care settings. While subtle cases remain challenging for clinicians, artificial intelligence (AI) offers promise as a diagnostic aid. This retrospective diagnostic accuracy study evaluates a deep learning model developed using Google Cloud Vertex AI for pneumothorax detection on chest X-rays.
Methods: A total of 152 anonymized frontal chest radiographs (76 pneumothorax, 76 normal), confirmed by computed tomography (CT), were collected from a single center between 2023 and 2024. The median patient age was 50 years (range: 18-95), with 67.1% male. The AI model was trained using AutoML Vision and evaluated in both cloud and edge deployment environments. Diagnostic accuracy metrics-including sensitivity, specificity, and F1 score-were compared with those of 15 physicians from four specialties (general practice, emergency medicine, thoracic surgery, radiology), stratified by experience level. Subgroup analysis focused on minimal pneumothorax cases. Confidence intervals were calculated using the Wilson method.
Results: In cloud deployment, the AI model achieved an overall diagnostic accuracy of 0.95 (95% CI: 0.83, 0.99), sensitivity of 1.00 (95% CI: 0.83, 1.00), specificity of 0.89 (95% CI: 0.69, 0.97), and F1 score of 0.95 (95% CI: 0.86, 1.00). Comparable performance was observed in edge mode. The model outperformed junior clinicians and matched or exceeded senior physicians, particularly in detecting minimal pneumothoraces, where AI sensitivity reached 0.93 (95% CI: 0.79, 0.97) compared to 0.55 (95% CI: 0.38, 0.69) - 0.84 (95% CI: 0.69, 0.92) among human readers.
Conclusion: The Google Cloud Vertex AI model demonstrates high diagnostic performance for pneumothorax detection, including subtle cases. Its consistent accuracy across edge and cloud settings supports its integration as a second reader or triage tool in diverse clinical workflows, especially in acute care or resource-limited environments.
期刊介绍:
The Journal of Multidisciplinary Healthcare (JMDH) aims to represent and publish research in healthcare areas delivered by practitioners of different disciplines. This includes studies and reviews conducted by multidisciplinary teams as well as research which evaluates or reports the results or conduct of such teams or healthcare processes in general. The journal covers a very wide range of areas and we welcome submissions from practitioners at all levels and from all over the world. Good healthcare is not bounded by person, place or time and the journal aims to reflect this. The JMDH is published as an open-access journal to allow this wide range of practical, patient relevant research to be immediately available to practitioners who can access and use it immediately upon publication.