Zoe Nonie Scheller, Jan Schulte, Christoph Wölper, Gebhard Haberhauer
{"title":"Chalcogen-Guided Control of Azoarene Photoswitching: Tuning Excited-State Energies Through Electronic Property Modulation.","authors":"Zoe Nonie Scheller, Jan Schulte, Christoph Wölper, Gebhard Haberhauer","doi":"10.1002/chem.202501571","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, chalcogen bonding has emerged as a promising alternative to classical supramolecular interactions such as hydrogen or halogen bonds. While its behavior in the electronic ground state has been extensively studied, its role in the excited state is gaining increasing attention. We recently demonstrated that the lack of photoswitchability of ortho-tellurated azobenzenes is due to an excitation-induced conversion of the classical chalcogen bond into a more pronounced, electron-rich three-electron σ bond. This transformation significantly strengthens the interaction between the chalcogen and the Lewis base center, effectively preventing isomerization. Based on these findings, we have now investigated the photoswitching behavior of ortho-tellurium-substituted azoarenes by modulation of the electronic properties of the aryl substituent and the oxidation state of the tellurium center. Our results show that electron-donating groups destabilize the excited-state geometry associated with the formation of a three-electron σ bond, thereby restoring photoisomerizability. Furthermore, oxidation to the Te(IV) species disrupts this bonding interaction, leading to significantly enhanced photoswitching properties. Together, these findings provide valuable design principles for the development of multiresponsive molecular switches based on chalcogen bonding and excited-state control.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e01571"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202501571","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, chalcogen bonding has emerged as a promising alternative to classical supramolecular interactions such as hydrogen or halogen bonds. While its behavior in the electronic ground state has been extensively studied, its role in the excited state is gaining increasing attention. We recently demonstrated that the lack of photoswitchability of ortho-tellurated azobenzenes is due to an excitation-induced conversion of the classical chalcogen bond into a more pronounced, electron-rich three-electron σ bond. This transformation significantly strengthens the interaction between the chalcogen and the Lewis base center, effectively preventing isomerization. Based on these findings, we have now investigated the photoswitching behavior of ortho-tellurium-substituted azoarenes by modulation of the electronic properties of the aryl substituent and the oxidation state of the tellurium center. Our results show that electron-donating groups destabilize the excited-state geometry associated with the formation of a three-electron σ bond, thereby restoring photoisomerizability. Furthermore, oxidation to the Te(IV) species disrupts this bonding interaction, leading to significantly enhanced photoswitching properties. Together, these findings provide valuable design principles for the development of multiresponsive molecular switches based on chalcogen bonding and excited-state control.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.