Magnetic Mesoporous Bioactive Glass Nanocomposite for Enhanced Osteogenesis and Angiogenesis in Bone Tissue Engineering.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
Martina Vitázková, Fatih Kurtuldu, Saeed Sajjadi, Zuzana Neščáková, Lenka Buňová, Adriana Zeleňáková, Pavol Hrubovčák, Andrea Šoltýsová, Zulema Vargas-Osorio, Martin Michálek
{"title":"Magnetic Mesoporous Bioactive Glass Nanocomposite for Enhanced Osteogenesis and Angiogenesis in Bone Tissue Engineering.","authors":"Martina Vitázková, Fatih Kurtuldu, Saeed Sajjadi, Zuzana Neščáková, Lenka Buňová, Adriana Zeleňáková, Pavol Hrubovčák, Andrea Šoltýsová, Zulema Vargas-Osorio, Martin Michálek","doi":"10.1021/acsabm.5c00894","DOIUrl":null,"url":null,"abstract":"<p><p>Bone regeneration is a complex process involving multiple biological pathways that require the simultaneous stimulation of osteogenesis and angiogenesis. This study presents a three-step fabrication process for a magnetic mesoporous bioactive glass nanocomposite (CoBTSp) designed to enhance bone tissue regeneration. The platform includes the synthesis of mesoporous bioactive glass nanoparticles codoped with cobalt (Co<sup>2+</sup>) and boron (B<sup>3+</sup>), the creation of well-defined core-shell systems (MBGNs@SiO<sub>2</sub>), and final decoration with superparamagnetic iron oxide nanoparticles (SPIONs). Its hierarchical structure enables the controlled and gradual release of bioactive ions, while the components improve biocompatibility and provide magnetic responsiveness for targeted bone therapy. Comprehensive physicochemical characterization confirmed the successful fabrication of CoBTSp, which exhibited superparamagnetic behavior for precise magnetic field localization. <i>In vitro,</i> assays demonstrated that CoBTSp enhanced angiogenic and osteogenic responses by upregulating <i>VEGFA</i>, <i>HIF1A</i>, <i>FGF2</i>, <i>RUNX2,</i> and <i>COL18A1</i> gene expression. The nanocomposite promoted osteoblast differentiation and stimulated mineral deposition, showing excellent biocompatibility without inducing cytotoxic or genotoxic effects. These findings establish CoBTSp as a promising and versatile platform for bone regeneration, combining remarkable biological functions and controlled ion release with magnetic targeting for improved clinical outcomes. Nonetheless, future research should focus on <i>in vivo</i> testing to optimize therapeutic ion levels and further develop magnetic mesoporous bioactive glass nanocomposites for regenerative medicine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Bone regeneration is a complex process involving multiple biological pathways that require the simultaneous stimulation of osteogenesis and angiogenesis. This study presents a three-step fabrication process for a magnetic mesoporous bioactive glass nanocomposite (CoBTSp) designed to enhance bone tissue regeneration. The platform includes the synthesis of mesoporous bioactive glass nanoparticles codoped with cobalt (Co2+) and boron (B3+), the creation of well-defined core-shell systems (MBGNs@SiO2), and final decoration with superparamagnetic iron oxide nanoparticles (SPIONs). Its hierarchical structure enables the controlled and gradual release of bioactive ions, while the components improve biocompatibility and provide magnetic responsiveness for targeted bone therapy. Comprehensive physicochemical characterization confirmed the successful fabrication of CoBTSp, which exhibited superparamagnetic behavior for precise magnetic field localization. In vitro, assays demonstrated that CoBTSp enhanced angiogenic and osteogenic responses by upregulating VEGFA, HIF1A, FGF2, RUNX2, and COL18A1 gene expression. The nanocomposite promoted osteoblast differentiation and stimulated mineral deposition, showing excellent biocompatibility without inducing cytotoxic or genotoxic effects. These findings establish CoBTSp as a promising and versatile platform for bone regeneration, combining remarkable biological functions and controlled ion release with magnetic targeting for improved clinical outcomes. Nonetheless, future research should focus on in vivo testing to optimize therapeutic ion levels and further develop magnetic mesoporous bioactive glass nanocomposites for regenerative medicine.

磁性介孔生物活性玻璃纳米复合材料在骨组织工程中促进骨生成和血管生成。
骨再生是一个复杂的过程,涉及多种生物途径,需要同时刺激骨生成和血管生成。本研究提出了一种用于增强骨组织再生的磁性介孔生物活性玻璃纳米复合材料(CoBTSp)的三步制备工艺。该平台包括合成与钴(Co2+)和硼(B3+)共掺杂的介孔生物活性玻璃纳米颗粒,创建定义良好的核-壳系统(MBGNs@SiO2),并最终用超顺磁性氧化铁纳米颗粒(SPIONs)进行装饰。它的分层结构使生物活性离子的控制和逐渐释放成为可能,同时这些成分提高了生物相容性,并为靶向骨治疗提供了磁响应性。综合物理化学表征证实了cotsp的成功制备,该材料具有超顺磁性,可实现精确的磁场定位。体外实验表明,CoBTSp通过上调VEGFA、HIF1A、FGF2、RUNX2和COL18A1基因表达,增强了血管生成和成骨反应。纳米复合材料促进成骨细胞分化,刺激矿物沉积,表现出良好的生物相容性,而不诱导细胞毒性或基因毒性作用。这些发现表明CoBTSp是一种很有前途的多功能骨再生平台,结合了显著的生物学功能和控制离子释放与磁靶向,以改善临床结果。尽管如此,未来的研究应侧重于体内测试,以优化治疗离子水平,并进一步开发用于再生医学的磁性介孔生物活性玻璃纳米复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信