Spectra of subrings of cohomology generated by characteristic classes for fusion systems

IF 0.9 3区 数学 Q2 MATHEMATICS
Ian J. Leary, Jason Semeraro
{"title":"Spectra of subrings of cohomology generated by characteristic classes for fusion systems","authors":"Ian J. Leary,&nbsp;Jason Semeraro","doi":"10.1112/blms.70074","DOIUrl":null,"url":null,"abstract":"<p>If <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> is a saturated fusion system on a finite <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-group <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, we define the Chern subring <span></span><math>\n <semantics>\n <mrow>\n <mo>Ch</mo>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\operatorname{Ch}}(\\mathcal {F})$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> to be the subring of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>;</mo>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^*(S;{\\mathbb {F}}_p)$</annotation>\n </semantics></math> generated by Chern classes of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>-stable representations of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. We show that <span></span><math>\n <semantics>\n <mrow>\n <mo>Ch</mo>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\operatorname{Ch}}(\\mathcal {F})$</annotation>\n </semantics></math> is contained in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>;</mo>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^*(\\mathcal {F};{\\mathbb {F}}_p)$</annotation>\n </semantics></math> and apply a result of Green and the first author to describe its maximal ideal spectrum in terms of a certain category of elementary abelian subgroups. We obtain similar results for various related subrings, including those generated by characteristic classes of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>-stable <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>-sets.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"1990-2005"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70074","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

If F $\mathcal {F}$ is a saturated fusion system on a finite p $p$ -group S $S$ , we define the Chern subring Ch ( F ) ${\operatorname{Ch}}(\mathcal {F})$ of F $\mathcal {F}$ to be the subring of H ( S ; F p ) $H^*(S;{\mathbb {F}}_p)$ generated by Chern classes of F $\mathcal {F}$ -stable representations of S $S$ . We show that Ch ( F ) ${\operatorname{Ch}}(\mathcal {F})$ is contained in H ( F ; F p ) $H^*(\mathcal {F};{\mathbb {F}}_p)$ and apply a result of Green and the first author to describe its maximal ideal spectrum in terms of a certain category of elementary abelian subgroups. We obtain similar results for various related subrings, including those generated by characteristic classes of F $\mathcal {F}$ -stable S $S$ -sets.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

融合系统特征类产生的上同调子谱
如果F $\mathcal {F}$是有限p$ p$ -群S$ S$上的饱和融合系统,我们定义F $\mathcal {F}$的chen子带Ch (F)$ {\operatorname{Ch}}(\mathcal {F})$是H∗的子带(5);F p)$ H^*(S;{\mathbb {F}}_p)$由F $\mathcal {F}$的陈氏类生成- S$ S$的稳定表示。证明了Ch (F)$ {\operatorname{Ch}}(\mathcal {F})$包含在H∗(F;​F p)$ H^*(\mathcal {F};{\mathbb {F}}_p)$,并应用Green和第一作者的结果在某一类初等阿贝尔子群上描述其最大理想谱。对于F $\mathcal {F}$ -stable S$ S$ -sets的特征类,我们得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信