On the injective dimension of unit Cartier and unit Frobenius modules

IF 0.9 3区 数学 Q2 MATHEMATICS
Manuel Blickle, Daniel Fink, Alexandria Wheeler, Wenliang Zhang
{"title":"On the injective dimension of unit Cartier and unit Frobenius modules","authors":"Manuel Blickle,&nbsp;Daniel Fink,&nbsp;Alexandria Wheeler,&nbsp;Wenliang Zhang","doi":"10.1112/blms.70075","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a regular <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring of prime characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We prove that the injective dimension of every unit Frobenius module <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> in the category of unit Frobenius modules is at most <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <msub>\n <mo>Supp</mo>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim (\\operatorname{Supp}_R(M))+1$</annotation>\n </semantics></math>. We further show that for unit Cartier modules the same bound holds over any noetherian <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> of prime characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. This shows that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mi>A</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim A+1$</annotation>\n </semantics></math> is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2006-2017"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R $R$ be a regular F $F$ -finite ring of prime characteristic p $p$ . We prove that the injective dimension of every unit Frobenius module M $M$ in the category of unit Frobenius modules is at most dim ( Supp R ( M ) ) + 1 $\dim (\operatorname{Supp}_R(M))+1$ . We further show that for unit Cartier modules the same bound holds over any noetherian F $F$ -finite ring A $A$ of prime characteristic p $p$ . This shows that dim A + 1 $\dim A+1$ is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian F $F$ -finite ring A $A$ .

Abstract Image

Abstract Image

Abstract Image

Abstract Image

单位Cartier和单位Frobenius模的内射维数
设R$ R$是一个素数特征为p$ p$的正则F$ F$ -有限环。证明了在单位Frobenius模的范畴中,每个单位Frobenius模M$ M$的内射维不超过dim (Supp R (M))。)+1$ \dim (\operatorname{Supp}_R(M))+1$。我们进一步证明了对于单位Cartier模,相同的界在任何素数特征为p$ p$的noether F$ F$ -有限环A$ A$上成立。这表明dim A+1$ \dim A+1$是noether F$ F$ -有限环A$ A$上任意单位Cartier模的内射维的一致上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信