{"title":"Peculiar behavior of the principal Laplacian eigenvalue for large negative Robin parameters","authors":"Charlotte Dietze, Konstantin Pankrashkin","doi":"10.1112/jlms.70242","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\Omega \\subset \\mathbb {R}^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\geqslant 2$</annotation>\n </semantics></math> be a bounded Lipschitz domain with outer unit normal <span></span><math>\n <semantics>\n <mi>ν</mi>\n <annotation>$\\nu$</annotation>\n </semantics></math>. For <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\alpha \\in \\mathbb {R}$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <msubsup>\n <mi>R</mi>\n <mi>Ω</mi>\n <mi>α</mi>\n </msubsup>\n <annotation>$R_\\Omega ^\\alpha$</annotation>\n </semantics></math> be the Laplacian in <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> with the Robin boundary condition <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>∂</mi>\n <mi>ν</mi>\n </msub>\n <mi>u</mi>\n <mo>+</mo>\n <mi>α</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\partial _\\nu u+\\alpha u=0$</annotation>\n </semantics></math>, and denote by <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>(</mo>\n <msubsup>\n <mi>R</mi>\n <mi>Ω</mi>\n <mi>α</mi>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$E(R^\\alpha _\\Omega)$</annotation>\n </semantics></math> its principal eigenvalue. In 2017, Bucur, Freitas, and Kennedy stated the following open question: <i>Does the limit of the ratio</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>R</mi>\n <mi>Ω</mi>\n <mi>α</mi>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <msup>\n <mi>α</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$E(R_\\Omega ^\\alpha)/ \\alpha ^2$</annotation>\n </semantics></math> <i>for</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>→</mo>\n <mo>−</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\alpha \\rightarrow -\\infty$</annotation>\n </semantics></math> <i>always exist?</i> We give a negative answer.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70242","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70242","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let with be a bounded Lipschitz domain with outer unit normal . For , let be the Laplacian in with the Robin boundary condition , and denote by its principal eigenvalue. In 2017, Bucur, Freitas, and Kennedy stated the following open question: Does the limit of the ratioforalways exist? We give a negative answer.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.