Noncompact surfaces, triangulations and rigidity

IF 0.9 3区 数学 Q2 MATHEMATICS
Stephen C. Power
{"title":"Noncompact surfaces, triangulations and rigidity","authors":"Stephen C. Power","doi":"10.1112/blms.70083","DOIUrl":null,"url":null,"abstract":"<p>Every noncompact surface is shown to have a (3,6)-tight triangulation, and applications are given to the generic rigidity of countable bar-joint frameworks in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>${\\mathbb {R}}^3$</annotation>\n </semantics></math>. In particular, every noncompact surface has a (3,6)-tight triangulation that is minimally 3-rigid. A simplification of Richards' proof of Kerékjártó's classification of noncompact surfaces is also given.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2097-2115"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70083","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70083","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Every noncompact surface is shown to have a (3,6)-tight triangulation, and applications are given to the generic rigidity of countable bar-joint frameworks in R 3 ${\mathbb {R}}^3$ . In particular, every noncompact surface has a (3,6)-tight triangulation that is minimally 3-rigid. A simplification of Richards' proof of Kerékjártó's classification of noncompact surfaces is also given.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

非紧致曲面、三角形和刚性
证明了每个非紧曲面都具有(3,6)紧三角化,并给出了r3 ${\mathbb {R}}^3$中可数杆节点框架的一般刚度的应用。特别地,每个非紧曲面都具有最小3刚性的(3,6)紧三角剖分。对Richards关于Kerékjártó非紧曲面分类的证明进行了简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信