A new proof of the Bondal–Orlov reconstruction using Matsui spectra

IF 0.9 3区 数学 Q2 MATHEMATICS
Daigo Ito, Hiroki Matsui
{"title":"A new proof of the Bondal–Orlov reconstruction using Matsui spectra","authors":"Daigo Ito,&nbsp;Hiroki Matsui","doi":"10.1112/blms.70079","DOIUrl":null,"url":null,"abstract":"<p>In 2005, Balmer defined the ringed space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Spec</mo>\n <mo>⊗</mo>\n </msub>\n <mi>T</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}_\\otimes \\mathcal {T}$</annotation>\n </semantics></math> for a given tensor triangulated category, while in 2023, the second author introduced the ringed space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Spec</mo>\n <mi>▵</mi>\n </msub>\n <mi>T</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}_\\vartriangle \\mathcal {T}$</annotation>\n </semantics></math> for a given triangulated category. In the algebro-geometric context, these spectra provided several reconstruction theorems using derived categories. In this paper, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Spec</mo>\n <msubsup>\n <mo>⊗</mo>\n <mi>X</mi>\n <mi>L</mi>\n </msubsup>\n </msub>\n <mo>Perf</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}_{\\otimes _X^\\mathbb {L}} \\operatorname{Perf} X$</annotation>\n </semantics></math> is an open ringed subspace of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Spec</mo>\n <mi>▵</mi>\n </msub>\n <mo>Perf</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}_\\vartriangle \\operatorname{Perf} X$</annotation>\n </semantics></math> for a quasi-projective variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. As an application, we provide a new proof of the Bondal–Orlov and Ballard reconstruction theorems in terms of these spectra. Recently, the first author introduced the Fourier–Mukai locus <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo>Spec</mo>\n <mi>FM</mi>\n </msup>\n <mo>Perf</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}^\\mathsf {FM} \\operatorname{Perf} X$</annotation>\n </semantics></math> for a smooth projective variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, which is constructed by gluing Fourier–Mukai partners of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> inside <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Spec</mo>\n <mi>▵</mi>\n </msub>\n <mo>Perf</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}_\\vartriangle \\operatorname{Perf} X$</annotation>\n </semantics></math>. As another application of our main theorem, we demonstrate that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo>Spec</mo>\n <mi>FM</mi>\n </msup>\n <mo>Perf</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}^\\mathsf {FM} \\operatorname{Perf} X$</annotation>\n </semantics></math> can be viewed as an open ringed subspace of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Spec</mo>\n <mi>▵</mi>\n </msub>\n <mo>Perf</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}_\\vartriangle \\operatorname{Perf} X$</annotation>\n </semantics></math>. As a result, we show that all the Fourier–Mukai partners of an abelian variety <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> can be reconstructed by topologically identifying the Fourier–Mukai locus within <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Spec</mo>\n <mi>▵</mi>\n </msub>\n <mo>Perf</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}_\\vartriangle \\operatorname{Perf} X$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2058-2076"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2005, Balmer defined the ringed space Spec T $\operatorname{Spec}_\otimes \mathcal {T}$ for a given tensor triangulated category, while in 2023, the second author introduced the ringed space Spec T $\operatorname{Spec}_\vartriangle \mathcal {T}$ for a given triangulated category. In the algebro-geometric context, these spectra provided several reconstruction theorems using derived categories. In this paper, we prove that Spec X L Perf X $\operatorname{Spec}_{\otimes _X^\mathbb {L}} \operatorname{Perf} X$ is an open ringed subspace of Spec Perf X $\operatorname{Spec}_\vartriangle \operatorname{Perf} X$ for a quasi-projective variety X $X$ . As an application, we provide a new proof of the Bondal–Orlov and Ballard reconstruction theorems in terms of these spectra. Recently, the first author introduced the Fourier–Mukai locus Spec FM Perf X $\operatorname{Spec}^\mathsf {FM} \operatorname{Perf} X$ for a smooth projective variety X $X$ , which is constructed by gluing Fourier–Mukai partners of X $X$ inside Spec Perf X $\operatorname{Spec}_\vartriangle \operatorname{Perf} X$ . As another application of our main theorem, we demonstrate that Spec FM Perf X $\operatorname{Spec}^\mathsf {FM} \operatorname{Perf} X$ can be viewed as an open ringed subspace of Spec Perf X $\operatorname{Spec}_\vartriangle \operatorname{Perf} X$ . As a result, we show that all the Fourier–Mukai partners of an abelian variety X $X$ can be reconstructed by topologically identifying the Fourier–Mukai locus within Spec Perf X $\operatorname{Spec}_\vartriangle \operatorname{Perf} X$ .

Abstract Image

Abstract Image

Abstract Image

用松井谱证明Bondal-Orlov重构
2005年,Balmer定义了给定张量三角化范畴的环空间Spec⊗T $\operatorname{Spec}_\otimes \mathcal {T}$,而在2023年,第二作者为给定的三角化类别引入了环空间Spec $\operatorname{Spec}_\vartriangle \mathcal {T}$。在代数几何背景下,这些谱提供了几个使用派生范畴的重构定理。在本文中,证明了Spec⊗X L Perf X$ \operatorname{Spec}_{\otimes _X^\mathbb {L}} \operatorname{Perf} X$是一个开环子空间准射影变量X$ X$的Perf X$ \operatorname{Spec}_\vartriangle \operatorname{Perf} X$。作为应用,我们利用这些谱给出了bond - orlov和Ballard重构定理的一个新的证明。最近,第一作者引入了光滑投影变量X$ X$的Fourier-Mukai轨迹Spec FM Perf X$ \operatorname{Spec}^\mathsf {FM} \operatorname{Perf} X$,在Spec X$ \operatorname{Spec}_\vartriangle \operatorname{Perf} X$内黏合X$ X$的傅里叶- mukai伙伴构成。作为主要定理的另一个应用,证明Spec FM Perf X$ \operatorname{Spec}^\mathsf {FM} \operatorname{Perf} X$可视为Spec FM X的开环子空间$\operatorname{Spec}_\vartriangle \operatorname{Perf} X$。结果表明,透过拓扑辨识Spec为Perf X$ \operatorname{Spec}_\vartriangle \operatorname{Perf} X$内的傅里叶- mukai轨迹,可以重建一个阿贝尔变体X$的所有傅里叶- mukai伙伴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信