Finite generation of split- F -regular $\text{split-}F\text{-regular}$ monoid algebras

IF 1.2 2区 数学 Q1 MATHEMATICS
Rankeya Datta, Karl Schwede, Kevin Tucker
{"title":"Finite generation of \n \n \n split-\n F\n -regular\n \n $\\text{split-}F\\text{-regular}$\n monoid algebras","authors":"Rankeya Datta,&nbsp;Karl Schwede,&nbsp;Kevin Tucker","doi":"10.1112/jlms.70234","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> be a submonoid of a free Abelian group of finite rank. We show that if <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is a field of prime characteristic such that the monoid <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>[</mo>\n <mi>S</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$k[S]$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mtext>split-</mtext>\n <mi>F</mi>\n <mtext>-regular</mtext>\n </mrow>\n <annotation>$\\text{split-}F\\text{-regular}$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>[</mo>\n <mi>S</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$k[S]$</annotation>\n </semantics></math> is a finitely generated <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-algebra, or equivalently, that <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a finitely generated monoid. Split-<span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-regular rings are possibly non-Noetherian or non-<span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite rings that satisfy the defining property of strongly <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-regular rings from the theories of tight closure and <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-singularities. Our finite generation result provides evidence in favor of the conjecture that <span></span><math>\n <semantics>\n <mrow>\n <mtext>split-</mtext>\n <mi>F</mi>\n <mtext>-regular</mtext>\n </mrow>\n <annotation>$\\text{split-}F\\text{-regular}$</annotation>\n </semantics></math> rings in function fields over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> have to be Noetherian. The key tool is Diophantine approximation from convex geometry.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70234","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let S $S$ be a submonoid of a free Abelian group of finite rank. We show that if k $k$ is a field of prime characteristic such that the monoid k $k$ -algebra k [ S ] $k[S]$ is split- F -regular $\text{split-}F\text{-regular}$ , then k [ S ] $k[S]$ is a finitely generated k $k$ -algebra, or equivalently, that S $S$ is a finitely generated monoid. Split- F $F$ -regular rings are possibly non-Noetherian or non- F $F$ -finite rings that satisfy the defining property of strongly F $F$ -regular rings from the theories of tight closure and F $F$ -singularities. Our finite generation result provides evidence in favor of the conjecture that split- F -regular $\text{split-}F\text{-regular}$ rings in function fields over k $k$ have to be Noetherian. The key tool is Diophantine approximation from convex geometry.

split- F -regular $\text{split-}F\text{-regular}$一元代数的有限生成
设S$ S$是一个有限秩的自由阿贝尔群的子拟子。我们证明了如果k$ k$是一个素数特征域,使得一元k$ k$ -代数k[S]$ k[S]$是分裂- F -正则的$\text{split-}F\text{-regular}$,则k[S]$ k[S]$是一个有限生成的k$ k$ -代数,或者等价地,S$ S$是一个有限生成的单元。从紧闭和F$ F$ -奇点理论出发,分裂- F$ F$ -正则环可能是满足强F$ F$ -正则环定义性质的非noether或非F$ F$ -有限环。我们的有限生成结果证明了k$ k$上的函数域中的split- F -regular $ $ text{split-}F\text{-regular}$环必须是noether环的猜想。关键工具是来自凸几何的丢番图近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信