Unveiling Calcium-Decorated Psi-Graphene as a High-Capacity Hydrogen Storage Material: A First-Principles Investigation

Energy Storage Pub Date : 2025-07-22 DOI:10.1002/est2.70225
Sruthi Thulaseedharan Jayasree, Afsal S. Shajahan, Nandakumar Kalarikkal, Brahmananda Chakraborty
{"title":"Unveiling Calcium-Decorated Psi-Graphene as a High-Capacity Hydrogen Storage Material: A First-Principles Investigation","authors":"Sruthi Thulaseedharan Jayasree,&nbsp;Afsal S. Shajahan,&nbsp;Nandakumar Kalarikkal,&nbsp;Brahmananda Chakraborty","doi":"10.1002/est2.70225","DOIUrl":null,"url":null,"abstract":"<p>Our work investigates the potential of Ca-decorated Psi-Graphene for efficient hydrogen storage using first-principles electronic structure calculations and ab initio molecular dynamics simulations. The system exhibits an exceptional storage capacity of 13.44 wt% by adsorbing up to 82 H<sub>2</sub> molecules in a fully Ca loaded Psi-Graphene unit cell, significantly exceeding the Department of Energy (DOE) target. The last four hydrogen molecules of each single Ca atom have low binding energies under GGA approximation due to the only presence of Vander Waals interactions. The uniform binding energy of ~0.232 eV (under the GGA approximation) surpasses other Ca-decorated materials, attributed to H<sub>2</sub> polarization, hybridization of Ca 3d empty orbitals with H<sub>2</sub> σ orbitals, and the non-symmetric nature of Psi-Graphene. Additionally, strong Ca-substrate binding (~1.95 eV/atom) ensures system stability, as confirmed by density of states (DOS), projected density of states (PDOS), and Bader charge analysis. We have also performed Nudged Elastic Band (NEB) analysis to confirm that our system is not prone to metal clustering. The non-magnetic nature of isolated Ca and Psi-Graphene maintains a zero magnetic moment throughout the adsorption process. Ab initio molecular dynamics simulations further validate the thermal stability of the system up to 500 K. Using Van't Hoff equation, the desorption temperature falls within the range of 334.16–364.79 K between 5 and 12 bar pressure. These findings establish that Ca-decorated Psi-Graphene is a highly promising candidate for hydrogen storage applications.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our work investigates the potential of Ca-decorated Psi-Graphene for efficient hydrogen storage using first-principles electronic structure calculations and ab initio molecular dynamics simulations. The system exhibits an exceptional storage capacity of 13.44 wt% by adsorbing up to 82 H2 molecules in a fully Ca loaded Psi-Graphene unit cell, significantly exceeding the Department of Energy (DOE) target. The last four hydrogen molecules of each single Ca atom have low binding energies under GGA approximation due to the only presence of Vander Waals interactions. The uniform binding energy of ~0.232 eV (under the GGA approximation) surpasses other Ca-decorated materials, attributed to H2 polarization, hybridization of Ca 3d empty orbitals with H2 σ orbitals, and the non-symmetric nature of Psi-Graphene. Additionally, strong Ca-substrate binding (~1.95 eV/atom) ensures system stability, as confirmed by density of states (DOS), projected density of states (PDOS), and Bader charge analysis. We have also performed Nudged Elastic Band (NEB) analysis to confirm that our system is not prone to metal clustering. The non-magnetic nature of isolated Ca and Psi-Graphene maintains a zero magnetic moment throughout the adsorption process. Ab initio molecular dynamics simulations further validate the thermal stability of the system up to 500 K. Using Van't Hoff equation, the desorption temperature falls within the range of 334.16–364.79 K between 5 and 12 bar pressure. These findings establish that Ca-decorated Psi-Graphene is a highly promising candidate for hydrogen storage applications.

Abstract Image

揭示钙修饰的psi -石墨烯作为高容量储氢材料:第一原理研究
我们的工作是利用第一性原理电子结构计算和从头算分子动力学模拟来研究ca修饰的psi -石墨烯在高效储氢方面的潜力。该系统通过在一个全Ca负载的psi -石墨烯单元电池中吸附多达82个H2分子,显示出13.44 wt%的卓越存储容量,大大超过了美国能源部(DOE)的目标。在GGA近似下,由于只存在范德瓦尔斯相互作用,每个Ca原子的后4个氢分子具有较低的结合能。由于H2极化、Ca三维空轨道与H2 σ轨道的杂化以及psi -石墨烯的非对称性质,其均匀结合能达到~0.232 eV(在GGA近似下),超过了其他Ca修饰材料。此外,强ca衬底结合(~1.95 eV/原子)确保了系统的稳定性,正如态密度(DOS),投影态密度(PDOS)和Bader电荷分析所证实的那样。我们还进行了轻推弹性带(NEB)分析,以确认我们的系统不容易发生金属聚集。孤立的Ca和psi -石墨烯的非磁性在整个吸附过程中保持零磁矩。从头算分子动力学模拟进一步验证了系统在500k温度下的热稳定性。根据范霍夫方程,在5 ~ 12 bar压力下,解吸温度在334.16 ~ 364.79 K范围内。这些发现表明,钙修饰的psi -石墨烯是一种非常有前途的储氢材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信