Low-temperature H2S detection using Fe-doped SnO2/rGO nanocomposite sensor

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-07-23 DOI:10.1039/D5RA01664A
N. B. Thakare, D. N. Bhoyar, U. P. Gawai, V. S. Kalyamwar, K. B. Raulkar, P. S. Bodkhe and G. T. Lamdhade
{"title":"Low-temperature H2S detection using Fe-doped SnO2/rGO nanocomposite sensor","authors":"N. B. Thakare, D. N. Bhoyar, U. P. Gawai, V. S. Kalyamwar, K. B. Raulkar, P. S. Bodkhe and G. T. Lamdhade","doi":"10.1039/D5RA01664A","DOIUrl":null,"url":null,"abstract":"<p >A low-temperature H<small><sub>2</sub></small>S gas sensor was designed using 3% Fe-doped SnO<small><sub>2</sub></small>/rGO nanocomposite as the sensing material. Fe-doped SnO<small><sub>2</sub></small> quantum dots (QDs) were prepared using a sol–gel combustion method, subsequently leading to the formation of the Fe–SnO<small><sub>2</sub></small>/rGO nanocomposite through a simple sonication process. To evaluate the performance of the sensor material, the sample underwent comprehensive characterization using XRD, FE-SEM, HRTEM, Raman shift, XPS and BET surface area analysis based on nitrogen (N<small><sub>2</sub></small>) adsorption–desorption. The XRD pattern HR-TEM confirmed the formation of a well-defined tetragonal crystal phase of SnO<small><sub>2</sub></small>, indicating high structural integrity. Meanwhile, the BET analysis revealed a specific surface area of 72.7 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> with pore size of 7.83 nm. Morphological analysis (HR-TEM) revealed that 3% Fe-doped SnO<small><sub>2</sub></small> QDs was uniformly dispersed on the rGO surface, with an average particle size of 5.6 nm. Gas sensing performance of pristine SnO<small><sub>2</sub></small> (S1), 3% Fe-doped SnO<small><sub>2</sub></small> QDs (S2), and 3% Fe–SnO<small><sub>2</sub></small>/rGO (S3) nanocomposite based sensors was evaluated at operating temperatures ranging from 25 °C to 175 °C. Incorporation of rGO significantly enhanced the sensitivity of the 3% Fe-doped SnO<small><sub>2</sub></small>/rGO nanocomposite towards H<small><sub>2</sub></small>S compared to pristine SnO<small><sub>2</sub></small> and 3% Fe–SnO<small><sub>2</sub></small> QDs. The 3% Fe–SnO<small><sub>2</sub></small>/rGO (S3) based sensor demonstrated a significant response of about 42.4 to 10 ppm H<small><sub>2</sub></small>S at a low operating temperature of 100 °C, with a rapid response time of 21 seconds. It also exhibited excellent selectivity for H<small><sub>2</sub></small>S against interfering gases such as NH<small><sub>3</sub></small>, LPG, and CO. The enhanced sensitivity and selectivity are attributed to the synergistic interaction between 3% Fe–SnO<small><sub>2</sub></small> and rGO. A possible gas sensing mechanism underlying the improved performance of the nanocomposite is discussed.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 32","pages":" 26308-26320"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01664a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01664a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A low-temperature H2S gas sensor was designed using 3% Fe-doped SnO2/rGO nanocomposite as the sensing material. Fe-doped SnO2 quantum dots (QDs) were prepared using a sol–gel combustion method, subsequently leading to the formation of the Fe–SnO2/rGO nanocomposite through a simple sonication process. To evaluate the performance of the sensor material, the sample underwent comprehensive characterization using XRD, FE-SEM, HRTEM, Raman shift, XPS and BET surface area analysis based on nitrogen (N2) adsorption–desorption. The XRD pattern HR-TEM confirmed the formation of a well-defined tetragonal crystal phase of SnO2, indicating high structural integrity. Meanwhile, the BET analysis revealed a specific surface area of 72.7 m2 g−1 with pore size of 7.83 nm. Morphological analysis (HR-TEM) revealed that 3% Fe-doped SnO2 QDs was uniformly dispersed on the rGO surface, with an average particle size of 5.6 nm. Gas sensing performance of pristine SnO2 (S1), 3% Fe-doped SnO2 QDs (S2), and 3% Fe–SnO2/rGO (S3) nanocomposite based sensors was evaluated at operating temperatures ranging from 25 °C to 175 °C. Incorporation of rGO significantly enhanced the sensitivity of the 3% Fe-doped SnO2/rGO nanocomposite towards H2S compared to pristine SnO2 and 3% Fe–SnO2 QDs. The 3% Fe–SnO2/rGO (S3) based sensor demonstrated a significant response of about 42.4 to 10 ppm H2S at a low operating temperature of 100 °C, with a rapid response time of 21 seconds. It also exhibited excellent selectivity for H2S against interfering gases such as NH3, LPG, and CO. The enhanced sensitivity and selectivity are attributed to the synergistic interaction between 3% Fe–SnO2 and rGO. A possible gas sensing mechanism underlying the improved performance of the nanocomposite is discussed.

Abstract Image

fe掺杂SnO2/rGO纳米复合传感器的低温H2S检测
以3% fe掺杂SnO2/rGO纳米复合材料为传感材料,设计了低温H2S气体传感器。采用溶胶-凝胶燃烧法制备了fe掺杂SnO2量子点(QDs),并通过简单的超声工艺制备了Fe-SnO2 /rGO纳米复合材料。为了评价传感器材料的性能,利用XRD、FE-SEM、HRTEM、拉曼位移、XPS和BET表面积分析对样品进行了综合表征,并基于氮(N2)吸附-脱附。XRD - HR-TEM证实了SnO2形成了一个轮廓清晰的四方晶相,表明其结构完整性较高。同时,BET分析显示其比表面积为72.7 m2 g−1,孔径为7.83 nm。形态学分析(HR-TEM)表明,3% fe掺杂的SnO2量子点均匀分布在氧化石墨烯表面,平均粒径为5.6 nm。在25℃至175℃的工作温度范围内,对原始SnO2 (S1)、3% fe掺杂SnO2量子点(S2)和3% Fe-SnO2 /rGO (S3)纳米复合材料传感器的气敏性能进行了评估。与原始SnO2和3% Fe-SnO2量子点相比,rGO的掺入显著提高了3% fe掺杂SnO2/rGO纳米复合材料对H2S的灵敏度。基于3% Fe-SnO2 /rGO (S3)的传感器在100°C的低工作温度下,具有42.4至10 ppm H2S的显著响应,快速响应时间为21秒。它对H2S的选择性也很好,不受NH3、LPG和CO等干扰气体的影响。这种灵敏度和选择性的提高是由于3% Fe-SnO2和rGO之间的协同作用。讨论了纳米复合材料性能提高的一种可能的气敏机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信