{"title":"The Architectural Sustainability Indicator","authors":"Jaime Roelandts;Ajeya Naithani;Lieven Eeckhout","doi":"10.1109/LCA.2025.3576891","DOIUrl":null,"url":null,"abstract":"Computing devices are responsible for a significant fraction of the world’s total carbon footprint. Designing sustainable systems is a challenging endeavor because of the huge design space, the complex objective function, and the inherent data uncertainty. To make matters worse, a design that seems sustainable at first, might turn out to not be when taking rebound effects into account. In this paper, we propose the Architectural Sustainability Indicator (ASI), a novel metric to assess the sustainability of a given design and determine whether it is strongly, weakly, or unsustainable. ASI provides insight and hints for turning unsustainable and weakly sustainable design points into strongly sustainable ones that are robust against potential rebound effects. A case study illustrates how ASI steers Scalar Vector Runahead, a weakly sustainable hardware prefetching technique, into a strongly sustainable one while offering a 3.2× performance boost.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"205-208"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11025183/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Computing devices are responsible for a significant fraction of the world’s total carbon footprint. Designing sustainable systems is a challenging endeavor because of the huge design space, the complex objective function, and the inherent data uncertainty. To make matters worse, a design that seems sustainable at first, might turn out to not be when taking rebound effects into account. In this paper, we propose the Architectural Sustainability Indicator (ASI), a novel metric to assess the sustainability of a given design and determine whether it is strongly, weakly, or unsustainable. ASI provides insight and hints for turning unsustainable and weakly sustainable design points into strongly sustainable ones that are robust against potential rebound effects. A case study illustrates how ASI steers Scalar Vector Runahead, a weakly sustainable hardware prefetching technique, into a strongly sustainable one while offering a 3.2× performance boost.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.