All Data-Driven LQR Algorithms Require at Least as Much Interval Data as System Identification

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Christopher Song;Jun Liu
{"title":"All Data-Driven LQR Algorithms Require at Least as Much Interval Data as System Identification","authors":"Christopher Song;Jun Liu","doi":"10.1109/LCSYS.2025.3586080","DOIUrl":null,"url":null,"abstract":"We show that algorithms for solving continuous-time infinite-horizon LQR problems using input and state data on intervals require at least as much data as system identification. Using this result, we show that the map from interval data to the optimal gain defined by these algorithms is continuous. We then obtain a convergence criterion that allows us to approximate the optimal gain by using sampled data in place of interval data. In doing so, we uncover a connection with the theory of numerical integration. We corroborate our theoretical results with some numerical experiments, which show how judicious selection of sample points can significantly improve the accuracy of the approximation.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1778-1783"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11071970/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that algorithms for solving continuous-time infinite-horizon LQR problems using input and state data on intervals require at least as much data as system identification. Using this result, we show that the map from interval data to the optimal gain defined by these algorithms is continuous. We then obtain a convergence criterion that allows us to approximate the optimal gain by using sampled data in place of interval data. In doing so, we uncover a connection with the theory of numerical integration. We corroborate our theoretical results with some numerical experiments, which show how judicious selection of sample points can significantly improve the accuracy of the approximation.
所有数据驱动的LQR算法至少需要和系统标识一样多的区间数据
我们证明了使用区间上的输入和状态数据来求解连续时间无限视界LQR问题的算法至少需要与系统识别一样多的数据。利用这一结果,我们证明了区间数据到这些算法定义的最优增益的映射是连续的。然后,我们得到一个收敛准则,使我们能够通过使用采样数据来代替区间数据来近似最佳增益。在这样做的过程中,我们发现了与数值积分理论的联系。通过数值实验验证了理论结果,表明合理选择样本点可以显著提高近似的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信