{"title":"Luminescent sensing carbon dots by using different portions of disposable face mask for recycling without waste","authors":"Sung Jun Park , Hyun Kyoung Yang","doi":"10.1016/j.cap.2025.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>The spread of the covid-19 caused an increase in the consumption of disposable mask. Most of the used disposable masks are buried in the ground and incinerated. In case of the burial, disposable masks take longer than hundreds of years. In case of the incineration, a large amount of greenhouse gases generate. It affects global environmental pollution and human. Herein, we represent a method to synthesize carbon dots through recycling parts (non-woven, melt-blown, and non-woven/melt-blown) of disposable masks without mask residues. The prepared carbon dots have a size about 3.5–4.0 nm and blue region emission. As a result of fluorescence data, carbon dots mixed with Fe<sup>3+</sup> ion display quenching effect due to several oxygen groups. Those interact coordination interaction with Fe<sup>3+</sup> ions which affects possibility of nonradiative recombination, thus generating quenching effect of fluorescence. Thus, the recycled carbon dots can be applied to several fields (metal sensing and anti-counterfeiting).</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"79 ","pages":"Pages 43-51"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001464","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of the covid-19 caused an increase in the consumption of disposable mask. Most of the used disposable masks are buried in the ground and incinerated. In case of the burial, disposable masks take longer than hundreds of years. In case of the incineration, a large amount of greenhouse gases generate. It affects global environmental pollution and human. Herein, we represent a method to synthesize carbon dots through recycling parts (non-woven, melt-blown, and non-woven/melt-blown) of disposable masks without mask residues. The prepared carbon dots have a size about 3.5–4.0 nm and blue region emission. As a result of fluorescence data, carbon dots mixed with Fe3+ ion display quenching effect due to several oxygen groups. Those interact coordination interaction with Fe3+ ions which affects possibility of nonradiative recombination, thus generating quenching effect of fluorescence. Thus, the recycled carbon dots can be applied to several fields (metal sensing and anti-counterfeiting).
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.