Electrostatic detachment of dust from the lunar surface: Microscopic fluctuations could be the key

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Trinesh Sana , S.K. Mishra
{"title":"Electrostatic detachment of dust from the lunar surface: Microscopic fluctuations could be the key","authors":"Trinesh Sana ,&nbsp;S.K. Mishra","doi":"10.1016/j.epsl.2025.119544","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a solution to the fundamental problem and physical mechanism of dust detachment from the lunar surface. We conceptualize that the electrostatic charge fluctuation at microscopic scale could create a sufficient electric field and coulomb force to overcome the dust-surface adhesive force and detach the dust particles. Markovian process is manifested with Monte Carlo scheme to simulate the concept. The simulation establishes the random generation and annihilation of fluctuating charged microscopic spots. The results demonstrate the existence of microscopic charged spots, capable of inducing sufficient electric field and Coulomb force of the order of a few MV/m and 10s of pN, respectively, which creates favorable conditions for lunar dust detachment. This concept fits the gap and put forward a consistent mechanism describing dust dynamics and generation of dusty plasma scenario over Moon.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"668 ","pages":"Article 119544"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25003425","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a solution to the fundamental problem and physical mechanism of dust detachment from the lunar surface. We conceptualize that the electrostatic charge fluctuation at microscopic scale could create a sufficient electric field and coulomb force to overcome the dust-surface adhesive force and detach the dust particles. Markovian process is manifested with Monte Carlo scheme to simulate the concept. The simulation establishes the random generation and annihilation of fluctuating charged microscopic spots. The results demonstrate the existence of microscopic charged spots, capable of inducing sufficient electric field and Coulomb force of the order of a few MV/m and 10s of pN, respectively, which creates favorable conditions for lunar dust detachment. This concept fits the gap and put forward a consistent mechanism describing dust dynamics and generation of dusty plasma scenario over Moon.
从月球表面静电剥离尘埃:微观波动可能是关键
我们提出了月球表面尘埃分离的基本问题和物理机制的解决方案。在微观尺度上,静电电荷波动可以产生足够的电场和库仑力来克服粉尘表面的粘附力,使粉尘颗粒分离。用蒙特卡罗方案来模拟马尔可夫过程的概念。模拟建立了波动带电微观点的随机产生和湮灭。结果表明,月球表面存在微观带电点,能够产生足够的电场和10s pN量级的库仑力,为月球尘埃分离创造了有利条件。这一概念填补了这一空白,并提出了一种描述月球尘埃动力学和尘埃等离子体产生情景的一致机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信