Prediction of UV/visible absorption maxima of organic compounds in dichloromethane and database generation of organic compounds with red-shifted absorption maxima

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Talal M. Althagafi , Mudassir Hussain Tahir , Sumaira Naeem , Fatimah Mohammed A. Alzahrani , M.S. Al-Buriahi
{"title":"Prediction of UV/visible absorption maxima of organic compounds in dichloromethane and database generation of organic compounds with red-shifted absorption maxima","authors":"Talal M. Althagafi ,&nbsp;Mudassir Hussain Tahir ,&nbsp;Sumaira Naeem ,&nbsp;Fatimah Mohammed A. Alzahrani ,&nbsp;M.S. Al-Buriahi","doi":"10.1016/j.orgel.2025.107304","DOIUrl":null,"url":null,"abstract":"<div><div>The current study uses machine learning (ML) to estimate the UV/visible absorption maxima. There are four ML models that are tested. Random Forest model is the best model due to smallest difference between the r-squared values for the training set and test set. Important features are also researched. Python-based tools are used to generate and visualise new chemical compounds, totalling twenty thousand. Predicted UV/visible absorption maxima values are used to screen organic substances. Red-shifted absorption organic molecules are chosen. Analysis of synthetic accessibility scores has indicated that synthesis of large percentage of selected compounds will be easy.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"145 ","pages":"Article 107304"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925001107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study uses machine learning (ML) to estimate the UV/visible absorption maxima. There are four ML models that are tested. Random Forest model is the best model due to smallest difference between the r-squared values for the training set and test set. Important features are also researched. Python-based tools are used to generate and visualise new chemical compounds, totalling twenty thousand. Predicted UV/visible absorption maxima values are used to screen organic substances. Red-shifted absorption organic molecules are chosen. Analysis of synthetic accessibility scores has indicated that synthesis of large percentage of selected compounds will be easy.

Abstract Image

有机化合物在二氯甲烷中紫外/可见光吸收最大值的预测及红移吸收最大值有机化合物的数据库生成
目前的研究使用机器学习(ML)来估计紫外线/可见光吸收最大值。这里测试了四个ML模型。随机森林模型是最好的模型,因为训练集和测试集的r平方值之间的差异最小。研究了重要的特征。基于python的工具被用来生成和可视化新的化合物,总共有2万种。预测的紫外/可见吸收最大值用于筛选有机物质。选择红移吸收有机分子。合成可达性分数分析表明,大部分选定的化合物是容易合成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信