Investigating the effects of heavy-ion radiation on n-type Step Tunnelling Path TFET

IF 3 Q2 PHYSICS, CONDENSED MATTER
Jatismar Saha , Manosh Protim Gogoi , Shreyas Tiwari , Bijit Choudhuri , Rajesh Saha
{"title":"Investigating the effects of heavy-ion radiation on n-type Step Tunnelling Path TFET","authors":"Jatismar Saha ,&nbsp;Manosh Protim Gogoi ,&nbsp;Shreyas Tiwari ,&nbsp;Bijit Choudhuri ,&nbsp;Rajesh Saha","doi":"10.1016/j.micrna.2025.208269","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of heavy-ion radiation on Step Tunneling Path (STP) TFET, focusing on charge deposition, device stability, and performance in radiation-intensive environments. Using Sentaurus TCAD simulations, the effects of heavy-ion generation are analysed at specific locations within the device 50, 100, 150, 200, and 230 nm from the source region. The analysis reveals that at linear energy transfer (LET) = 50 MeV-cm<sup>2</sup>/mg, the drain current (I<sub>D</sub>) reaches approximately 28,000 μA, demonstrating a significant transient response due to increased charge deposition. The study also examines the effect of varying ion incidence angles (0°, 30°, 45°, 60°, and 90°) at constant LET of 20 MeV-cm<sup>2</sup>/mg. Results indicate that at 0° incidence angle, the drain current peaks at approximately 200,000 μA, emphasizing the critical role of impact geometry in radiation-induced device degradation. The findings confirm that heavy ions deposit more charge along their trajectory compared to alpha particles, leading to higher ionization densities and stronger transient effects. This research provides crucial insights into the radiation resilience of STP-TFETs, making them viable candidates for high-energy and space applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208269"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of heavy-ion radiation on Step Tunneling Path (STP) TFET, focusing on charge deposition, device stability, and performance in radiation-intensive environments. Using Sentaurus TCAD simulations, the effects of heavy-ion generation are analysed at specific locations within the device 50, 100, 150, 200, and 230 nm from the source region. The analysis reveals that at linear energy transfer (LET) = 50 MeV-cm2/mg, the drain current (ID) reaches approximately 28,000 μA, demonstrating a significant transient response due to increased charge deposition. The study also examines the effect of varying ion incidence angles (0°, 30°, 45°, 60°, and 90°) at constant LET of 20 MeV-cm2/mg. Results indicate that at 0° incidence angle, the drain current peaks at approximately 200,000 μA, emphasizing the critical role of impact geometry in radiation-induced device degradation. The findings confirm that heavy ions deposit more charge along their trajectory compared to alpha particles, leading to higher ionization densities and stronger transient effects. This research provides crucial insights into the radiation resilience of STP-TFETs, making them viable candidates for high-energy and space applications.
研究重离子辐射对n型阶梯隧穿通道TFET的影响
本文研究了重离子辐射对阶梯隧道路径(STP) TFET的影响,重点研究了电荷沉积、器件稳定性和辐射强环境下的性能。利用Sentaurus TCAD模拟,在距离源区域50、100、150、200和230 nm的特定位置分析了重离子产生的影响。分析表明,当线性能量传递(LET) = 50 MeV-cm2/mg时,漏极电流(ID)达到28000 μA左右,由于电荷沉积增加,漏极电流表现出显著的瞬态响应。该研究还考察了在恒定LET为20 MeV-cm2/mg时不同离子入射角(0°、30°、45°、60°和90°)的影响。结果表明,在0°入射角下,漏极电流峰值约为20万μA,强调了冲击几何形状在辐射诱导器件退化中的关键作用。研究结果证实,与α粒子相比,重离子在其轨道上沉积更多的电荷,从而导致更高的电离密度和更强的瞬态效应。这项研究为stp - tfet的辐射弹性提供了重要的见解,使其成为高能和空间应用的可行候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信