The art of adsorption in Moisture: Improving operational conditions for selective formaldehyde adsorption in ZSM-5 zeolite

IF 4.7 3区 材料科学 Q1 CHEMISTRY, APPLIED
Huimin Zheng , Jingyu Zhang , Yinan Liu , Shenfei Bai , Jing Ji , Shilin Tian , Zheyuan Tang
{"title":"The art of adsorption in Moisture: Improving operational conditions for selective formaldehyde adsorption in ZSM-5 zeolite","authors":"Huimin Zheng ,&nbsp;Jingyu Zhang ,&nbsp;Yinan Liu ,&nbsp;Shenfei Bai ,&nbsp;Jing Ji ,&nbsp;Shilin Tian ,&nbsp;Zheyuan Tang","doi":"10.1016/j.micromeso.2025.113765","DOIUrl":null,"url":null,"abstract":"<div><div>Formaldehyde, a pervasive and hazardous indoor pollutant, demands efficient adsorption-based removal. Molecular simulations of ZSM-5 zeolite, a multifunctional substrate for photocatalytic and adsorbent applications, provide critical insights into its capture mechanisms. Here, Monte Carlo simulations are employed to investigate the competitive adsorption of formaldehyde and water in all-silica ZSM-5 zeolites under varying temperatures and molecular loadings. At low loading, water preferentially occupies the straight channels, while increasing loading shifts dominance to formaldehyde in these regions, with water migrating toward zigzag pores. Elevated temperatures weaken hydrogen bonding among water molecules, promoting more stable formaldehyde adsorption. A transition is observed around 128 molecules/supercell, indicating the formation of HCHO-H<sub>2</sub>O cooperative clusters. Surface modification can further enhance formaldehyde selectivity. These findings highlight the critical roles of geometric confinement and intermolecular interactions in co-adsorption, providing a theoretical basis for optimizing ZSM-5-based indoor formaldehyde removal systems.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"397 ","pages":"Article 113765"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138718112500280X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Formaldehyde, a pervasive and hazardous indoor pollutant, demands efficient adsorption-based removal. Molecular simulations of ZSM-5 zeolite, a multifunctional substrate for photocatalytic and adsorbent applications, provide critical insights into its capture mechanisms. Here, Monte Carlo simulations are employed to investigate the competitive adsorption of formaldehyde and water in all-silica ZSM-5 zeolites under varying temperatures and molecular loadings. At low loading, water preferentially occupies the straight channels, while increasing loading shifts dominance to formaldehyde in these regions, with water migrating toward zigzag pores. Elevated temperatures weaken hydrogen bonding among water molecules, promoting more stable formaldehyde adsorption. A transition is observed around 128 molecules/supercell, indicating the formation of HCHO-H2O cooperative clusters. Surface modification can further enhance formaldehyde selectivity. These findings highlight the critical roles of geometric confinement and intermolecular interactions in co-adsorption, providing a theoretical basis for optimizing ZSM-5-based indoor formaldehyde removal systems.

Abstract Image

湿吸附工艺:改进ZSM-5分子筛选择性吸附甲醛的操作条件
甲醛是一种普遍存在的有害室内污染物,需要有效的吸附去除。ZSM-5沸石是一种用于光催化和吸附剂应用的多功能基质,其分子模拟为其捕获机制提供了重要的见解。本文采用蒙特卡罗模拟研究了在不同温度和分子负载下,甲醛和水在全硅ZSM-5分子筛上的竞争吸附。在低负荷条件下,水优先占据直线型孔道,而增加负荷时,这些区域的优势向甲醛转移,水向锯齿状孔道迁移。升高的温度削弱水分子之间的氢键,促进更稳定的甲醛吸附。在128个分子/超级单体附近观察到一个转变,表明形成了HCHO-H2O合作团簇。表面改性可进一步提高甲醛选择性。这些发现突出了几何约束和分子间相互作用在共吸附中的关键作用,为优化基于zsm -5的室内甲醛去除系统提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信