Asymptotic expansion at infinity of solutions to Monge-Ampère equation with Cα right term

IF 2.3 2区 数学 Q1 MATHEMATICS
Shuai Qi, Jiguang Bao
{"title":"Asymptotic expansion at infinity of solutions to Monge-Ampère equation with Cα right term","authors":"Shuai Qi,&nbsp;Jiguang Bao","doi":"10.1016/j.jde.2025.113645","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a non-local method to establish the asymptotic expansion at infinity of solutions to Monge-Ampère equation <span><math><mi>det</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>v</mi><mo>)</mo><mo>=</mo><mi>f</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <em>f</em> is a perturbation of 1 and is only assumed to be Hölder continuous outside a bounded subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, compared to the previous work that <em>f</em> is at least <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"447 ","pages":"Article 113645"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006722","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a non-local method to establish the asymptotic expansion at infinity of solutions to Monge-Ampère equation det(D2v)=f on Rn, where f is a perturbation of 1 and is only assumed to be Hölder continuous outside a bounded subset of Rn, compared to the previous work that f is at least C2.
带Cα右项的monge - ampontre方程解的无穷远渐近展开式
我们开发了一种非局部方法来建立monges - ampontre方程det (D2v)=f在Rn上的解在无穷远处的渐近展开式,其中f是1的摄动,并且仅假设在Rn的有界子集外Hölder连续,与之前的工作相比,f至少是C2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信