Design and simulation of Cs2SnI6 based perovskite solar cell

Md. Arif Uddin, Sohanur Rahman, Tanha Zaman
{"title":"Design and simulation of Cs2SnI6 based perovskite solar cell","authors":"Md. Arif Uddin,&nbsp;Sohanur Rahman,&nbsp;Tanha Zaman","doi":"10.1016/j.nxmate.2025.100980","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a computational investigation of a lead-free, stable, non-toxic and completely inorganic double perovskite solar cell based on Cs₂SnI₆, aimed at enhancing device performance through systematic simulation. Our study focuses on a comparative screening of multiple transport layers combinations and systematically optimizes interfacial and physical parameters specific to Cs₂SnI₆ solar cells. To identify the best suitable electron transport layer (ETL) and hole transport layer (HTL) seven different ETLs (TiO<sub>2</sub>, WS<sub>2</sub>, IGZO, WO<sub>3</sub>, PCBM, ZnO, ZnSe) and six different HTLs (Cu<sub>2</sub>O, CuI, p-MoO<sub>3</sub>, MoS<sub>2</sub>, CuSCN, SrCu<sub>2</sub>O) have been tested. Based on simulated photovoltaic performance, WS<sub>2</sub> and SrCu<sub>2</sub>O are selected as the best compatible ETL and HTL, respectively. The study further explores the influence of thickness, bandgap, defect density, interface defect density, donor and acceptor density and operating temperature on device behavior. The effect of various back contact metals was also assessed. Finally, an optimized n-i-p structured device, FTO/WS<sub>2</sub>/Cs<sub>2</sub>SnI<sub>6</sub>/SrCu<sub>2</sub>O/Ni achieved a notable open circuit voltage (V<sub>oc</sub>) of 1.06 V, short circuit current (J<sub>sc</sub>) of 30.82 mA/cm<sup>2</sup>, fill factor (FF) of 87.11 % and a high-power conversion efficiency (PCE) of 28.43 %. This work contributes to the advancement of environmentally friendly perovskite solar cells and provides valuable design insights for high-performance Cs-based photovoltaic devices. The investigation was carried out by employing 1-Dimensional Solar Cell Capacitance (SCAPS-1D) software.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100980"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825004988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a computational investigation of a lead-free, stable, non-toxic and completely inorganic double perovskite solar cell based on Cs₂SnI₆, aimed at enhancing device performance through systematic simulation. Our study focuses on a comparative screening of multiple transport layers combinations and systematically optimizes interfacial and physical parameters specific to Cs₂SnI₆ solar cells. To identify the best suitable electron transport layer (ETL) and hole transport layer (HTL) seven different ETLs (TiO2, WS2, IGZO, WO3, PCBM, ZnO, ZnSe) and six different HTLs (Cu2O, CuI, p-MoO3, MoS2, CuSCN, SrCu2O) have been tested. Based on simulated photovoltaic performance, WS2 and SrCu2O are selected as the best compatible ETL and HTL, respectively. The study further explores the influence of thickness, bandgap, defect density, interface defect density, donor and acceptor density and operating temperature on device behavior. The effect of various back contact metals was also assessed. Finally, an optimized n-i-p structured device, FTO/WS2/Cs2SnI6/SrCu2O/Ni achieved a notable open circuit voltage (Voc) of 1.06 V, short circuit current (Jsc) of 30.82 mA/cm2, fill factor (FF) of 87.11 % and a high-power conversion efficiency (PCE) of 28.43 %. This work contributes to the advancement of environmentally friendly perovskite solar cells and provides valuable design insights for high-performance Cs-based photovoltaic devices. The investigation was carried out by employing 1-Dimensional Solar Cell Capacitance (SCAPS-1D) software.
基于Cs2SnI6的钙钛矿太阳能电池的设计与仿真
本研究对一种基于c2sni₆的无铅、稳定、无毒、全无机双钙钛矿太阳能电池进行了计算研究,旨在通过系统仿真提高器件性能。我们的研究重点是对多个传输层组合进行比较筛选,并系统地优化Cs₂SnI₆太阳能电池的界面和物理参数。为了确定最合适的电子传输层(ETL)和空穴传输层(HTL),测试了7种不同的ETL (TiO2、WS2、IGZO、WO3、PCBM、ZnO、ZnSe)和6种不同的HTL (Cu2O、CuI、p-MoO3、MoS2、CuSCN、SrCu2O)。基于模拟光伏性能,选择WS2和SrCu2O作为最佳兼容ETL和html材料。该研究进一步探讨了厚度、带隙、缺陷密度、界面缺陷密度、供体和受体密度以及工作温度对器件行为的影响。对不同背接触金属的影响也进行了评价。最后,优化后的n-i-p结构器件FTO/WS2/Cs2SnI6/SrCu2O/Ni的开路电压(Voc)为1.06 V,短路电流(Jsc)为30.82 mA/cm2,填充因子(FF)为87.11 %,大功率转换效率(PCE)为28.43 %。这项工作有助于环境友好型钙钛矿太阳能电池的发展,并为高性能基于cs的光伏器件提供有价值的设计见解。研究采用一维太阳能电池电容(SCAPS-1D)软件进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信