Harnessing Nephelium lappaceum leaf extract for the green fabrication of FeMnO3 nanoparticles as a catalyst in the Biginelli reaction

Dewangga Oky Bagus Apriandanu , Ahmad Farhan , Hilna Diana Sahaya , Bayu Ardiansah , Dicky Annas , Nur Rohman , Noordini M. Salleh , Ridla Bakri
{"title":"Harnessing Nephelium lappaceum leaf extract for the green fabrication of FeMnO3 nanoparticles as a catalyst in the Biginelli reaction","authors":"Dewangga Oky Bagus Apriandanu ,&nbsp;Ahmad Farhan ,&nbsp;Hilna Diana Sahaya ,&nbsp;Bayu Ardiansah ,&nbsp;Dicky Annas ,&nbsp;Nur Rohman ,&nbsp;Noordini M. Salleh ,&nbsp;Ridla Bakri","doi":"10.1016/j.nxmate.2025.100958","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to green chemistry has prompted the development of eco-friendly methods for synthesizing functional nanomaterials. Herein, FeMnO₃ nanoparticles were synthesized using <em>Nephelium lappaceum</em> (rambutan) leaf extract as a natural hydrolyzing and stabilizing agent. Bioactive compounds such as flavonoids and saponins facilitated nanoparticle formation without toxic reagents. The material was characterized by FTIR, UV-Vis DRS, XRD, XPS, FE-SEM, and TEM. The FeMnO₃ nanoparticles were then employed as a heterogeneous catalyst in the Biginelli reaction to produce dihydropyrimidinones (DHPMs). Optimization of reaction parameters (5 mol% catalyst, methanol, 50 °C, 24 h) afforded up to 65 % yield, and the structure of the model product was confirmed by ¹H and ¹³C NMR. The catalyst exhibited good reusability over four cycles without significant loss of activity. This study demonstrates the potential of plant-mediated synthesis for generating sustainable nanocatalysts and advancing green multicomponent reactions.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100958"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825004769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to green chemistry has prompted the development of eco-friendly methods for synthesizing functional nanomaterials. Herein, FeMnO₃ nanoparticles were synthesized using Nephelium lappaceum (rambutan) leaf extract as a natural hydrolyzing and stabilizing agent. Bioactive compounds such as flavonoids and saponins facilitated nanoparticle formation without toxic reagents. The material was characterized by FTIR, UV-Vis DRS, XRD, XPS, FE-SEM, and TEM. The FeMnO₃ nanoparticles were then employed as a heterogeneous catalyst in the Biginelli reaction to produce dihydropyrimidinones (DHPMs). Optimization of reaction parameters (5 mol% catalyst, methanol, 50 °C, 24 h) afforded up to 65 % yield, and the structure of the model product was confirmed by ¹H and ¹³C NMR. The catalyst exhibited good reusability over four cycles without significant loss of activity. This study demonstrates the potential of plant-mediated synthesis for generating sustainable nanocatalysts and advancing green multicomponent reactions.
利用枸杞子叶提取物作为Biginelli反应的催化剂,绿色制备FeMnO3纳米颗粒
向绿色化学的过渡促进了合成功能纳米材料的环保方法的发展。以红毛丹叶提取物为天然水解稳定剂,合成了FeMnO₃纳米颗粒。生物活性化合物如类黄酮和皂苷促进纳米颗粒的形成,而无需有毒试剂。通过FTIR、UV-Vis DRS、XRD、XPS、FE-SEM、TEM等手段对材料进行了表征。然后将FeMnO₃纳米颗粒用作Biginelli反应的非均相催化剂,以产生二氢嘧啶(dhpm)。优化反应参数(5 mol%催化剂,甲醇,50°C, 24 h),产率可达65 %,并通过¹h和¹³C NMR证实了模型产物的结构。催化剂在四个循环中表现出良好的可重复使用性,没有明显的活性损失。本研究证明了植物介导合成在产生可持续纳米催化剂和推进绿色多组分反应方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信