Comparative evaluation of four reconstruction techniques for prostate T2-weighted MRI: Sensitivity encoding, compressed sensing, deep learning, and super-resolution
IF 2.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Comparative evaluation of four reconstruction techniques for prostate T2-weighted MRI: Sensitivity encoding, compressed sensing, deep learning, and super-resolution","authors":"Noriko Nishioka , Noriyuki Fujima , Satonori Tsuneta , Daisuke Kato , Takashi Kamiishi , Masato Yoshikawa , Rina Kimura , Keita Sakamoto , Ryuji Matsumoto , Takashige Abe , Jihun Kwon , Masami Yoneyama , Kohsuke Kudo","doi":"10.1016/j.ejro.2025.100671","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To evaluate and compare the image quality and lesion conspicuity of prostate T2-weighted imaging (T2WI) using four reconstruction methods: conventional Sensitivity Encoding (SENSE), compressed sensing (CS), model-based deep learning reconstruction (DL), and deep learning super-resolution reconstruction (SR).</div></div><div><h3>Methods</h3><div>This retrospective study included 49 patients who underwent multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) for suspected prostate cancer. Axial T2WI was acquired using two protocols: conventional SENSE and CS-based acquisition. From the CS-based data, three reconstruction methods (CS, DL, and SR) were applied to generate additional images. Two board-certified radiologists independently assessed overall image quality and sharpness using a 4-point Likert scale (1 = poor, 4 = excellent). Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and sharpness index. PI-RADS T2WI scoring and lesion conspicuity were preliminarily evaluated in 18 individuals with pathologically confirmed prostate cancer. Statistical comparisons were conducted using the Wilcoxon signed-rank test.</div></div><div><h3>Results</h3><div>SR consistently achieved the highest scores in both qualitative (overall image quality, image sharpness) and quantitative (SNR, CNR, sharpness index) assessments, compared with SENSE, CS, and DL (all pairwise comparisons, Bonferroni-corrected p < 0.0001). In lesion-based analysis, SR showed a trend toward improved lesion conspicuity, although PI-RADS T2WI scores were similar across reconstruction.</div></div><div><h3>Conclusion</h3><div>SR reconstruction demonstrated superior image quality in both qualitative and quantitative assessments and showed potential benefits for lesion visualization. These findings, although based on a small sample, suggest that SR may be a promising approach for prostate MRI and warrants further investigation in larger populations.</div></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"15 ","pages":"Article 100671"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047725000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To evaluate and compare the image quality and lesion conspicuity of prostate T2-weighted imaging (T2WI) using four reconstruction methods: conventional Sensitivity Encoding (SENSE), compressed sensing (CS), model-based deep learning reconstruction (DL), and deep learning super-resolution reconstruction (SR).
Methods
This retrospective study included 49 patients who underwent multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) for suspected prostate cancer. Axial T2WI was acquired using two protocols: conventional SENSE and CS-based acquisition. From the CS-based data, three reconstruction methods (CS, DL, and SR) were applied to generate additional images. Two board-certified radiologists independently assessed overall image quality and sharpness using a 4-point Likert scale (1 = poor, 4 = excellent). Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and sharpness index. PI-RADS T2WI scoring and lesion conspicuity were preliminarily evaluated in 18 individuals with pathologically confirmed prostate cancer. Statistical comparisons were conducted using the Wilcoxon signed-rank test.
Results
SR consistently achieved the highest scores in both qualitative (overall image quality, image sharpness) and quantitative (SNR, CNR, sharpness index) assessments, compared with SENSE, CS, and DL (all pairwise comparisons, Bonferroni-corrected p < 0.0001). In lesion-based analysis, SR showed a trend toward improved lesion conspicuity, although PI-RADS T2WI scores were similar across reconstruction.
Conclusion
SR reconstruction demonstrated superior image quality in both qualitative and quantitative assessments and showed potential benefits for lesion visualization. These findings, although based on a small sample, suggest that SR may be a promising approach for prostate MRI and warrants further investigation in larger populations.