{"title":"Large-scale electric bus network transition planning via deep reinforcement learning","authors":"Luyun Zhao , Shiyu Shen , Zhan Zhao","doi":"10.1016/j.trd.2025.104899","DOIUrl":null,"url":null,"abstract":"<div><div>Urban bus electrification is gaining global interest, playing a crucial role in reducing emissions. This study defines and addresses the electric bus network transition problem (EBNTP), jointly optimizing battery electric bus (BEB) fleet transitions and charging facility planning over a multi-period horizon. Existing research often neglects this interdependent long-term planning and lacks scalable solutions for large systems. This study proposes a deep reinforcement learning (DRL) approach, formulating EBNTP as a Markov Decision Process modeling sequential planning decisions, and introduces the DRL-HetGNN method, integrating heterogeneous graph neural networks (HetGNN) to capture network effects and enhance efficiency in large-scale applications. Using Hong Kong’s franchised bus system as a case study, DRL-HetGNN demonstrates superior performance and generalizability compared to benchmark methods. Scenario analyses explore budget allocations, independent operators, BEB subsidies, and price fluctuations, while examining policy-incentive mechanisms to accelerate electrification. The findings will support policymakers in planning sustainable public transportation systems.</div></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":"146 ","pages":"Article 104899"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920925003098","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban bus electrification is gaining global interest, playing a crucial role in reducing emissions. This study defines and addresses the electric bus network transition problem (EBNTP), jointly optimizing battery electric bus (BEB) fleet transitions and charging facility planning over a multi-period horizon. Existing research often neglects this interdependent long-term planning and lacks scalable solutions for large systems. This study proposes a deep reinforcement learning (DRL) approach, formulating EBNTP as a Markov Decision Process modeling sequential planning decisions, and introduces the DRL-HetGNN method, integrating heterogeneous graph neural networks (HetGNN) to capture network effects and enhance efficiency in large-scale applications. Using Hong Kong’s franchised bus system as a case study, DRL-HetGNN demonstrates superior performance and generalizability compared to benchmark methods. Scenario analyses explore budget allocations, independent operators, BEB subsidies, and price fluctuations, while examining policy-incentive mechanisms to accelerate electrification. The findings will support policymakers in planning sustainable public transportation systems.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.