{"title":"A tractable model of epidemic control and equilibrium dynamics","authors":"Martín Gonzalez-Eiras , Dirk Niepelt","doi":"10.1016/j.jedc.2025.105145","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a single-state model of epidemic control and equilibrium dynamics, and we show that its simplicity comes at very low cost during the early phase of an epidemic. Novel analytical results concern the continuity of the policy function; the reversal from lockdown to stimulus policies; and the relaxation of optimal lockdowns when testing is feasible. The model's enhanced computational efficiency over SIR-based frameworks allows for the quantitative assessment of various new scenarios and specifications. Calibrated to reflect the COVID-19 pandemic, the model predicts an optimal initial activity reduction of 38 percent, with subsequent stimulus measures accounting for one-third of the welfare gains from optimal government intervention. The threat of recurrent infection waves makes the optimal lockdown more stringent, while a linear or near-linear activity-infection nexus, or strong consumption smoothing needs, reduce its stringency.</div></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":"178 ","pages":"Article 105145"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188925001113","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a single-state model of epidemic control and equilibrium dynamics, and we show that its simplicity comes at very low cost during the early phase of an epidemic. Novel analytical results concern the continuity of the policy function; the reversal from lockdown to stimulus policies; and the relaxation of optimal lockdowns when testing is feasible. The model's enhanced computational efficiency over SIR-based frameworks allows for the quantitative assessment of various new scenarios and specifications. Calibrated to reflect the COVID-19 pandemic, the model predicts an optimal initial activity reduction of 38 percent, with subsequent stimulus measures accounting for one-third of the welfare gains from optimal government intervention. The threat of recurrent infection waves makes the optimal lockdown more stringent, while a linear or near-linear activity-infection nexus, or strong consumption smoothing needs, reduce its stringency.
期刊介绍:
The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.