Some theoretical results on the finite convergence property and the temporary stalling behavior of Anderson acceleration on linear systems

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yunhui He
{"title":"Some theoretical results on the finite convergence property and the temporary stalling behavior of Anderson acceleration on linear systems","authors":"Yunhui He","doi":"10.1016/j.cam.2025.116925","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Anderson acceleration with window size <span><math><mi>m</mi></math></span> (AA(<span><math><mi>m</mi></math></span>)) applied to fixed-point iteration for linear systems. We explore some conditions on the <span><math><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></math></span> initial guesses of AA(<span><math><mi>m</mi></math></span>), aiming for the residuals <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. We propose the sufficient and necessary conditions on the <span><math><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></math></span> initial guesses for <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. These findings can help us better understand the performance between the original fixed-point iteration and Anderson acceleration. Moreover, under some conditions, sharp lower and upper bounds on the coefficients of AA(1) for both linear and nonlinear systems have been proposed. A recent work [H. De Sterck et al., J. Sci. Comput. 99(1), 12, 2024] demonstrates an instance where the temporary stalling behavior <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> occurs for AA(1). However, it leaves the question of the existence of <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span> for some integer <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>2</mn></mrow></math></span> of AA(1). We give examples to show the temporary stalling behavior of Anderson acceleration for <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>2</mn></mrow></math></span> applied to solving linear systems.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"474 ","pages":"Article 116925"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272500439X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Anderson acceleration with window size m (AA(m)) applied to fixed-point iteration for linear systems. We explore some conditions on the m+1 initial guesses of AA(m), aiming for the residuals rm+1=0. We propose the sufficient and necessary conditions on the m+1 initial guesses for rm+1=0. These findings can help us better understand the performance between the original fixed-point iteration and Anderson acceleration. Moreover, under some conditions, sharp lower and upper bounds on the coefficients of AA(1) for both linear and nonlinear systems have been proposed. A recent work [H. De Sterck et al., J. Sci. Comput. 99(1), 12, 2024] demonstrates an instance where the temporary stalling behavior r2=r1 occurs for AA(1). However, it leaves the question of the existence of rk0=rk010 for some integer k0>2 of AA(1). We give examples to show the temporary stalling behavior of Anderson acceleration for k0>2 applied to solving linear systems.
线性系统上Anderson加速度的有限收敛性和暂时失速行为的一些理论结果
我们考虑窗口大小为m (AA(m))的安德森加速度应用于线性系统的不动点迭代。针对残差rm+1=0,探讨了AA(m)的m+1个初始猜测的一些条件。我们给出了rm+1=0的m+1个初始猜测的充要条件。这些发现可以帮助我们更好地理解原始不动点迭代和安德森加速之间的性能。此外,在一定条件下,给出了线性和非线性系统的AA(1)系数的明显下界和上界。最近的一项工作[H]。De Sterck et al., J. Sci。计算。99(1),12,2024]演示了AA(1)发生临时失速行为r2=r1的实例。然而,对于AA(1)的整数k0>;2,它留下了rk0=rk0−1≠0的存在性问题。我们给出了应用于求解线性系统的k0>;2的Anderson加速度的暂时失速行为的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信