High-performance indoor organic photovoltaics based on vertical acenaphthylene derivatives with halogen substitution: Suppressing energetic disorder and optimizing charge dynamics
IF 31.6 1区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Xu , Hao Wang , Ruijie Ma , Jiaming Huang , Yang Xu , Pai Peng , Tengying Ma , Nan Ye , Baicheng Wang , Ninggui Ma , Youdi Zhang , Wei Gao , Xiaotian Hu , Gang Li , Yiwang Chen
{"title":"High-performance indoor organic photovoltaics based on vertical acenaphthylene derivatives with halogen substitution: Suppressing energetic disorder and optimizing charge dynamics","authors":"Shuai Xu , Hao Wang , Ruijie Ma , Jiaming Huang , Yang Xu , Pai Peng , Tengying Ma , Nan Ye , Baicheng Wang , Ninggui Ma , Youdi Zhang , Wei Gao , Xiaotian Hu , Gang Li , Yiwang Chen","doi":"10.1016/j.mser.2025.101066","DOIUrl":null,"url":null,"abstract":"<div><div>Organic solar cells (OSCs) have shown great potential for indoor photovoltaic technology, owing to their advantages of strong light absorption characteristics, versatile color options and adjustable bandgap. However, substantial energetic disorder in active layer materials severely limits device performance under low-light conditions, presenting a major challenge for indoor photovoltaic applications. In this study, we have designed and synthesized four novel non-fullerene acceptors (NFAs) incorporating vertical acenaphthylene derivatives via halogen substitution strategies, namely GWQ20, Z3, Z4, and Z5, tailored specifically for indoor optoelectronic applications. Z3, Z4, and Z5 show much suppressed non-radiative energy loss and reduced energetic disorder but poor charge generation and recombination than GWQ20. Subsequently, for further device performance enhancement under indoor condition, it’s necessary to combine their distinct advantages via ternary strategy. As a result, target ternary devices based on Z4/Z5 both perform much better performance: 25.8 %/25.6 % vs 20.8 % under 1000 lux LED, and 30.1 %/30.2 % vs 26.8 % under 2000 lux LED, attributed to simultaneously minimized energy loss and protected charge behavior. These results are appealing the cutting-edge level of the field. Beyond efficiency, we herewith demonstrate that reducing energetic disorder is a key factor to improve the free carrier generation for indoor performance improvement, which could be instructive for future development of material design and device optimization on this type of OPVs.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101066"},"PeriodicalIF":31.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001433","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic solar cells (OSCs) have shown great potential for indoor photovoltaic technology, owing to their advantages of strong light absorption characteristics, versatile color options and adjustable bandgap. However, substantial energetic disorder in active layer materials severely limits device performance under low-light conditions, presenting a major challenge for indoor photovoltaic applications. In this study, we have designed and synthesized four novel non-fullerene acceptors (NFAs) incorporating vertical acenaphthylene derivatives via halogen substitution strategies, namely GWQ20, Z3, Z4, and Z5, tailored specifically for indoor optoelectronic applications. Z3, Z4, and Z5 show much suppressed non-radiative energy loss and reduced energetic disorder but poor charge generation and recombination than GWQ20. Subsequently, for further device performance enhancement under indoor condition, it’s necessary to combine their distinct advantages via ternary strategy. As a result, target ternary devices based on Z4/Z5 both perform much better performance: 25.8 %/25.6 % vs 20.8 % under 1000 lux LED, and 30.1 %/30.2 % vs 26.8 % under 2000 lux LED, attributed to simultaneously minimized energy loss and protected charge behavior. These results are appealing the cutting-edge level of the field. Beyond efficiency, we herewith demonstrate that reducing energetic disorder is a key factor to improve the free carrier generation for indoor performance improvement, which could be instructive for future development of material design and device optimization on this type of OPVs.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.