Lluís Bermúdez , David Anaya , Jaume Belles-Sampera
{"title":"Leveraging xAI for enhanced surrender risk management in life insurance products","authors":"Lluís Bermúdez , David Anaya , Jaume Belles-Sampera","doi":"10.1016/j.iedeen.2025.100286","DOIUrl":null,"url":null,"abstract":"<div><div>Explainable Artificial Intelligence (xAI) plays a crucial role in enhancing our understanding of decision-making processes within black-box Machine Learning models. Our objective is to introduce various xAI methodologies, providing risk managers with accessible approaches to model interpretation. To exemplify this, we present a case study focused on mitigating surrender risk in insurance savings products. We begin by using real data from universal life policies to build logistic regression and tree-based models. Using a range of xAI techniques, we gain valuable insight into the inner workings of tree-based models. We then propose a novel supervised clustering approach that integrates Shapley values with a Kohonen neural network (KNN). The process involves three main steps: computing Shapley values from a supervised tree-based model; clustering individuals into homogeneous profiles using an unsupervised KNN; and interpreting these profiles with a supervised decision tree model. Finally, we present several key findings derived from the application of xAI techniques, which have the potential to enhance surrender risk management practices.</div></div>","PeriodicalId":45796,"journal":{"name":"European Research on Management and Business Economics","volume":"31 3","pages":"Article 100286"},"PeriodicalIF":7.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Research on Management and Business Economics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S244488342500018X","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
Explainable Artificial Intelligence (xAI) plays a crucial role in enhancing our understanding of decision-making processes within black-box Machine Learning models. Our objective is to introduce various xAI methodologies, providing risk managers with accessible approaches to model interpretation. To exemplify this, we present a case study focused on mitigating surrender risk in insurance savings products. We begin by using real data from universal life policies to build logistic regression and tree-based models. Using a range of xAI techniques, we gain valuable insight into the inner workings of tree-based models. We then propose a novel supervised clustering approach that integrates Shapley values with a Kohonen neural network (KNN). The process involves three main steps: computing Shapley values from a supervised tree-based model; clustering individuals into homogeneous profiles using an unsupervised KNN; and interpreting these profiles with a supervised decision tree model. Finally, we present several key findings derived from the application of xAI techniques, which have the potential to enhance surrender risk management practices.
期刊介绍:
European Research on Management and Business Economics (ERMBE) was born in 1995 as Investigaciones Europeas de Dirección y Economía de la Empresa (IEDEE). The journal is published by the European Academy of Management and Business Economics (AEDEM) under this new title since 2016, it was indexed in SCOPUS in 2012 and in Thomson Reuters Emerging Sources Citation Index in 2015. From the beginning, the aim of the Journal is to foster academic research by publishing original research articles that meet the highest analytical standards, and provide new insights that contribute and spread the business management knowledge