Activating interfacial Li+ transportation channels via lithium-rich space charge layers towards stable solid-state lithium-metal batteries

IF 13.1 1区 化学 Q1 Energy
Xi He , Ziqi Liu , Jinyan Ni , Xiaofei Yang , Hao Wu , Meng Yao
{"title":"Activating interfacial Li+ transportation channels via lithium-rich space charge layers towards stable solid-state lithium-metal batteries","authors":"Xi He ,&nbsp;Ziqi Liu ,&nbsp;Jinyan Ni ,&nbsp;Xiaofei Yang ,&nbsp;Hao Wu ,&nbsp;Meng Yao","doi":"10.1016/j.jechem.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>The unsatisfactory performance of individual inorganic and organic solid-state electrolytes has driven the development of composite solid electrolytes (CSEs) for solid-state lithium batteries (SSLBs). However, limited Li<sup>+</sup> transport across lithium-poor space charge layers (SCLs) at the filler/polymer matrix and cathode/CSE interfaces hinders ionic conductivity and compromises the electrochemical performance of SSLBs. Herein, we report a Bi<sub>2</sub>O<sub>3</sub>-induced lithium-rich SCL that activates interfacial Li<sup>+</sup> transportation channels between Li<sub>0.35</sub>La<sub>0.55</sub>TiO<sub>3</sub> (LLTO) filler and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix, enabling efficient Li<sup>+</sup> diffusion across their interface. This design achieves a remarkable ionic conductivity of 1.63 mS cm<sup>−1</sup> and a high lithium transference number of 0.80-approximately two- and three-fold improvements compared to its Bi<sub>2</sub>O<sub>3</sub>-free counterpart. Additionally, the dielectric properties of Bi<sub>2</sub>O<sub>3</sub> generate a built-in electric field, mitigating lithium-poor SCLs and facilitating Li<sup>+</sup> transport at the cathode/CSE interface. As a result, the Li symmetric cells exhibit stable operation over 1000 h at 0.5 mA cm<sup>−2</sup>, while the full SSLBs using LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub> cathode deliver exceptional electrochemical performance, retaining 86.1% capacity after 200 cycles at 0.5 C. The innovation of creating Li-rich SCLs to activate the interfacial Li<sup>+</sup> transportation channels at the interface provides a new avenue to achieve better CSEs and SSLBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"110 ","pages":"Pages 293-300"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004966","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The unsatisfactory performance of individual inorganic and organic solid-state electrolytes has driven the development of composite solid electrolytes (CSEs) for solid-state lithium batteries (SSLBs). However, limited Li+ transport across lithium-poor space charge layers (SCLs) at the filler/polymer matrix and cathode/CSE interfaces hinders ionic conductivity and compromises the electrochemical performance of SSLBs. Herein, we report a Bi2O3-induced lithium-rich SCL that activates interfacial Li+ transportation channels between Li0.35La0.55TiO3 (LLTO) filler and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix, enabling efficient Li+ diffusion across their interface. This design achieves a remarkable ionic conductivity of 1.63 mS cm−1 and a high lithium transference number of 0.80-approximately two- and three-fold improvements compared to its Bi2O3-free counterpart. Additionally, the dielectric properties of Bi2O3 generate a built-in electric field, mitigating lithium-poor SCLs and facilitating Li+ transport at the cathode/CSE interface. As a result, the Li symmetric cells exhibit stable operation over 1000 h at 0.5 mA cm−2, while the full SSLBs using LiNi0.9Co0.05Mn0.05O2 cathode deliver exceptional electrochemical performance, retaining 86.1% capacity after 200 cycles at 0.5 C. The innovation of creating Li-rich SCLs to activate the interfacial Li+ transportation channels at the interface provides a new avenue to achieve better CSEs and SSLBs.

Abstract Image

通过富锂空间电荷层激活界面Li+运输通道,实现稳定的固态锂金属电池
单个无机和有机固态电解质的性能不理想,推动了用于固态锂电池(sslb)的复合固体电解质(cse)的发展。然而,在填料/聚合物基体和阴极/CSE界面处,Li+在缺锂空间电荷层(scl)上的传输受限,阻碍了离子电导率,影响了sslb的电化学性能。在此,我们报道了一种bi2o3诱导的富锂SCL,它激活了Li0.35La0.55TiO3 (LLTO)填料和聚偏氟乙烯-共六氟丙烯(PVDF-HFP)基体之间的界面Li+运输通道,使Li+在其界面上有效扩散。该设计实现了1.63 mS cm−1的显著离子电导率和0.80的高锂转移数,与不含bi2o3的同类产品相比,大约提高了两倍和三倍。此外,Bi2O3的介电特性产生了一个内置的电场,减轻了锂-贫scl,促进了锂+在阴极/CSE界面的输运。结果表明,锂对称电池在0.5 mA cm−2下稳定运行1000小时,而使用LiNi0.9Co0.05Mn0.05O2阴极的全sslb具有优异的电化学性能,在0.5 c下循环200次后仍保持86.1%的容量。创造富锂scl来激活界面上的界面Li+运输通道的创新为实现更好的CSEs和sslb提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信