Analysis of H1 penalized fictitious domain method for parabolic problems

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Swapnil Kale , Debasish Pradhan , Sarvesh Kumar
{"title":"Analysis of H1 penalized fictitious domain method for parabolic problems","authors":"Swapnil Kale ,&nbsp;Debasish Pradhan ,&nbsp;Sarvesh Kumar","doi":"10.1016/j.camwa.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>This work focuses on establishing optimal <em>a priori</em> error estimates and stability analysis for <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> penalized fictitious domain method for parabolic problems defined over curved complex domains. We embed the given complicated domain Ω into a larger rectangular domain R and extend the governing equation to a rectangular domain R by employing penalty parameter <em>ϵ</em> in the fictitious part <span><math><mi>R</mi><mo>﹨</mo><mi>Ω</mi></math></span>. Considering the inherent characteristic of the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> penalty, in the variational formulation, we impose the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> penalty only on the elliptic part and evince that the solution of the new penalized problem converges to the original solution. In order to obtain a numerical solution to the penalized problem, for spatial discretization, we utilize linear-finite elements on structured triangular mesh irrespective of the shape of the domain, and an Euler backward scheme is employed for the discretization of time space. Convergence analysis and discrete stability estimates are derived for semi and fully-discrete schemes. Moreover, numerical experiments are accomplished to validate the theoretical convergence rate and examine the computational efficiency of the proposed method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 183-200"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002962","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work focuses on establishing optimal a priori error estimates and stability analysis for H1 penalized fictitious domain method for parabolic problems defined over curved complex domains. We embed the given complicated domain Ω into a larger rectangular domain R and extend the governing equation to a rectangular domain R by employing penalty parameter ϵ in the fictitious part RΩ. Considering the inherent characteristic of the H1 penalty, in the variational formulation, we impose the H1 penalty only on the elliptic part and evince that the solution of the new penalized problem converges to the original solution. In order to obtain a numerical solution to the penalized problem, for spatial discretization, we utilize linear-finite elements on structured triangular mesh irrespective of the shape of the domain, and an Euler backward scheme is employed for the discretization of time space. Convergence analysis and discrete stability estimates are derived for semi and fully-discrete schemes. Moreover, numerical experiments are accomplished to validate the theoretical convergence rate and examine the computational efficiency of the proposed method.
抛物型问题的H1罚虚域法分析
本文的工作重点是建立最优的先验误差估计和稳定性分析的H1惩罚虚域方法的抛物线问题定义在弯曲的复域。我们将给定的复杂域Ω嵌入到更大的矩形域R中,并通过在虚拟部分R\Ω中使用惩罚参数λ,将控制方程扩展到矩形域R。考虑到H1惩罚的固有特性,在变分公式中,我们只对椭圆部分施加H1惩罚,并证明了新惩罚问题的解收敛于原解。为了得到惩罚问题的数值解,对于空间离散化,我们在结构三角形网格上使用线性有限元,而不考虑域的形状,并采用欧拉倒推格式进行时间空间离散化。给出了半离散和全离散格式的收敛性分析和离散稳定性估计。通过数值实验验证了该方法的理论收敛速度和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信