Hybrid meshless method for solving inhomogeneous polyharmonic equations

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
C.S. Chen , Andreas Karageorghis , Q.G. Liu
{"title":"Hybrid meshless method for solving inhomogeneous polyharmonic equations","authors":"C.S. Chen ,&nbsp;Andreas Karageorghis ,&nbsp;Q.G. Liu","doi":"10.1016/j.camwa.2025.07.023","DOIUrl":null,"url":null,"abstract":"<div><div>We employ the method of particular solutions in the numerical solution of boundary value problems for inhomogeneous polyharmonic equations in two and three dimensions. An approximate particular solution of the governing partial differential equation is calculated using the radial basis function collocation method while the resulting homogeneous problems are solved using the method of fundamental solutions. The results of several numerical experiments demonstrate the efficacy of the proposed approach.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 218-232"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003116","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We employ the method of particular solutions in the numerical solution of boundary value problems for inhomogeneous polyharmonic equations in two and three dimensions. An approximate particular solution of the governing partial differential equation is calculated using the radial basis function collocation method while the resulting homogeneous problems are solved using the method of fundamental solutions. The results of several numerical experiments demonstrate the efficacy of the proposed approach.
求解非齐次多谐方程的混合无网格法
本文采用特解方法对二维和三维非齐次多谐方程的边值问题进行了数值求解。采用径向基函数配置法计算控制偏微分方程的近似特解,采用基本解法求解齐次问题。数值实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信