Manipulating local environment and spin-state of single-atom via helical structure for CO2 electroreduction to formate

IF 14.9 1区 化学 Q1 Energy
Liuliu Zhu, Huiyan Ren, Hongbo Gu
{"title":"Manipulating local environment and spin-state of single-atom via helical structure for CO2 electroreduction to formate","authors":"Liuliu Zhu,&nbsp;Huiyan Ren,&nbsp;Hongbo Gu","doi":"10.1016/j.jechem.2025.06.059","DOIUrl":null,"url":null,"abstract":"<div><div>The underappreciated role of supports has severely constrained the modification of single-atom catalysts. It’s important to develop a strategy for achieving a strong synergy between catalytic structures and active sites. Here, we devise a structure-inducing method involving the manipulation of the chemical reaction environment and spin-state of Cu single-atom with helical carbon nanotube (HCNT) for CO<sub>2</sub> efficient electroreduction to formate. Utilizing in situ characterization and finite element simulation, we find that the helical structure effectively enriches HCO<sub>3</sub><sup>−</sup> and OH<sup>−</sup> on the surface of Cu-N<sub>2</sub>O<sub>2</sub>/HCNT catalyst during electrocatalytic CO<sub>2</sub> reduction, creating a favorable interfacial environment for formate generation. Magnetic characterizations and theoretical calculations reveal spin polarization of Cu-N<sub>2</sub>O<sub>2</sub> sites, yielding readily polarized magnetic moments. Consequently, a spin-ordered phase emerges on the surface of Cu-N<sub>2</sub>O<sub>2</sub>/HCNT under a magnetic field, enhancing formate selectivity. Impressively, Cu-N<sub>2</sub>O<sub>2</sub>/HCNT achieves 93.6 % formate selectivity at −0.80 V vs. RHE under 200 mT. Under an in situ magnetic field, it maintains over 80 % formate selectivity at −175 mA/cm<sup>2</sup> for 100 h. Our findings offer novel insights into single-atom catalyst modification.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"110 ","pages":"Pages 347-355"},"PeriodicalIF":14.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625005340","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The underappreciated role of supports has severely constrained the modification of single-atom catalysts. It’s important to develop a strategy for achieving a strong synergy between catalytic structures and active sites. Here, we devise a structure-inducing method involving the manipulation of the chemical reaction environment and spin-state of Cu single-atom with helical carbon nanotube (HCNT) for CO2 efficient electroreduction to formate. Utilizing in situ characterization and finite element simulation, we find that the helical structure effectively enriches HCO3 and OH on the surface of Cu-N2O2/HCNT catalyst during electrocatalytic CO2 reduction, creating a favorable interfacial environment for formate generation. Magnetic characterizations and theoretical calculations reveal spin polarization of Cu-N2O2 sites, yielding readily polarized magnetic moments. Consequently, a spin-ordered phase emerges on the surface of Cu-N2O2/HCNT under a magnetic field, enhancing formate selectivity. Impressively, Cu-N2O2/HCNT achieves 93.6 % formate selectivity at −0.80 V vs. RHE under 200 mT. Under an in situ magnetic field, it maintains over 80 % formate selectivity at −175 mA/cm2 for 100 h. Our findings offer novel insights into single-atom catalyst modification.

Abstract Image

通过螺旋结构控制局部环境和单原子自旋状态,使CO2电还原生成
由于对载体的作用认识不足,严重制约了单原子催化剂的改性。开发一种策略来实现催化结构和活性位点之间的强协同作用是很重要的。在此,我们设计了一种结构诱导方法,涉及操纵Cu单原子与螺旋碳纳米管(HCNT)的化学反应环境和自旋状态,以实现CO2高效电还原生成甲酸。利用原位表征和有限元模拟,我们发现在电催化CO2还原过程中,螺旋结构有效地富集了Cu-N2O2/HCNT催化剂表面的HCO3−和OH−,为生成甲酸酯创造了良好的界面环境。磁性表征和理论计算揭示了Cu-N2O2位的自旋极化,产生容易极化的磁矩。因此,在磁场作用下,Cu-N2O2/HCNT表面出现了自旋有序相,增强了甲酸盐的选择性。令人印象深刻的是,Cu-N2O2/HCNT在- 0.80 V下与RHE相比,在200 mT下具有93.6%的甲酸选择性。在原位磁场下,在- 175 mA/cm2下保持100小时超过80%的甲酸选择性。我们的研究结果为单原子催化剂改性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信