Marwan Taha , Anna-Maria Pappa , Hani Saleh , Anas Alazzam
{"title":"Enhancing cell characterization with microfluidics and AI: a comprehensive review of mechanical, electrical, and hybrid techniques","authors":"Marwan Taha , Anna-Maria Pappa , Hani Saleh , Anas Alazzam","doi":"10.1016/j.btre.2025.e00905","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines recent advancements in cell characterization using microfluidic devices, emphasizing mechanical, electrical, and hybrid methodologies. These technologies have substantially improved throughput, precision, and the range of cell types they can analyze. Key microfluidic technologies for cell characterization are reviewed, including label-free electrical and mechanical methods designed for high-throughput, real-time analysis. Microfluidic advancements in cell characterization are critically assessed, along with challenges such as operational complexity and the need for more adaptable, user-friendly platforms. The integration of AI and machine learning in microfluidic systems is also discussed, highlighting their crucial role in automating data analysis and enhancing classification accuracy, with implications for personalized medicine and advanced cellular assays.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"47 ","pages":"Article e00905"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines recent advancements in cell characterization using microfluidic devices, emphasizing mechanical, electrical, and hybrid methodologies. These technologies have substantially improved throughput, precision, and the range of cell types they can analyze. Key microfluidic technologies for cell characterization are reviewed, including label-free electrical and mechanical methods designed for high-throughput, real-time analysis. Microfluidic advancements in cell characterization are critically assessed, along with challenges such as operational complexity and the need for more adaptable, user-friendly platforms. The integration of AI and machine learning in microfluidic systems is also discussed, highlighting their crucial role in automating data analysis and enhancing classification accuracy, with implications for personalized medicine and advanced cellular assays.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.