Excess-lithium-free LLZO enabling fast ion conduction and ultra-low interfacial resistance for solid-state lithium metal batteries

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mohammad Nasir , Jun Seo , Jae In Song , Yong Seok Choi , Hee Jung Park
{"title":"Excess-lithium-free LLZO enabling fast ion conduction and ultra-low interfacial resistance for solid-state lithium metal batteries","authors":"Mohammad Nasir ,&nbsp;Jun Seo ,&nbsp;Jae In Song ,&nbsp;Yong Seok Choi ,&nbsp;Hee Jung Park","doi":"10.1016/j.ensm.2025.104482","DOIUrl":null,"url":null,"abstract":"<div><div>Garnet-type La<sub>6.25</sub>Ga<sub>0.25</sub>La<sub>3</sub>ZrO<sub>12</sub> (LLZO:Ga) is a leading solid electrolyte for next-generation solid-state lithium batteries (SSLBs), yet its widespread adoption is hindered by the routine need for excess lithium and protective powder coverings during synthesis, both of which increase costs and compromise interface stability. Here, we present a scalable, excess-lithium-free synthesis of LLZO:Ga that achieves ultrafast Li-ion conductivity of 1.64(3) × 10<sup>–3</sup> S/cm at 25 °C, surpassing many Li-rich counterparts. Molecular dynamics simulations reveal that excess lithium blocks diffusion pathways, hindering ion mobility and cooperative hopping. Remarkably, the zero-Li-excess LLZO:Ga delivers ultralow interfacial resistance (∼5 Ω·cm<sup>2</sup>) in symmetric Li|LLZO:Ga|Li cells, enabling stable cycling beyond 700 h at 0.2 mA/cm<sup>2</sup> with minimal overpotential (∼60 mV). Full cells paired with LiFePO<sub>4</sub> retain ∼96 % capacity over 80 cycles (at 0.1C), demonstrating practical viability. This work establishes a new benchmark in solid electrolyte design, achieving high conductivity, stable interfaces, and scalable processability without lithium excess.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"81 ","pages":"Article 104482"},"PeriodicalIF":20.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725004799","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Garnet-type La6.25Ga0.25La3ZrO12 (LLZO:Ga) is a leading solid electrolyte for next-generation solid-state lithium batteries (SSLBs), yet its widespread adoption is hindered by the routine need for excess lithium and protective powder coverings during synthesis, both of which increase costs and compromise interface stability. Here, we present a scalable, excess-lithium-free synthesis of LLZO:Ga that achieves ultrafast Li-ion conductivity of 1.64(3) × 10–3 S/cm at 25 °C, surpassing many Li-rich counterparts. Molecular dynamics simulations reveal that excess lithium blocks diffusion pathways, hindering ion mobility and cooperative hopping. Remarkably, the zero-Li-excess LLZO:Ga delivers ultralow interfacial resistance (∼5 Ω·cm2) in symmetric Li|LLZO:Ga|Li cells, enabling stable cycling beyond 700 h at 0.2 mA/cm2 with minimal overpotential (∼60 mV). Full cells paired with LiFePO4 retain ∼96 % capacity over 80 cycles (at 0.1C), demonstrating practical viability. This work establishes a new benchmark in solid electrolyte design, achieving high conductivity, stable interfaces, and scalable processability without lithium excess.

Abstract Image

Abstract Image

过量无锂LLZO实现固态锂金属电池的快速离子传导和超低界面电阻
石榴石型La6.25Ga0.25La3ZrO12 (LLZO:Ga)是下一代固态锂电池(sslb)的主要固体电解质,但其广泛采用受到合成过程中常规需要过量锂和保护粉末覆盖的阻碍,这两者都增加了成本并损害了界面稳定性。在这里,我们提出了一种可扩展的,过量无锂的LLZO:Ga合成方法,在25 °C下实现了1.64(3) × 10-3 S/cm的超快锂离子电导率,超过了许多富含锂的同行。分子动力学模拟表明,过量的锂阻断了扩散途径,阻碍了离子迁移和协同跳跃。值得注意的是,零锂过量LLZO:Ga在对称Li|LLZO:Ga|锂电池中提供了超低的界面电阻(~ 5 Ω·cm2),能够以0.2 mA/ cm2的速度稳定循环700小时以上,并具有最小的过电位(~ 60 mV)。与LiFePO4配对的完整电池在80次循环(0.1C)中保持96%的容量,证明了实际的可行性。这项工作建立了固体电解质设计的新基准,实现了高导电性,稳定的界面和可扩展的可加工性,而没有锂过量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信