Mutualism between degraders and nondegraders stabilizes the function of a natural biopolymer-degrading community

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Liang Liu, Changfu Tian, Miaoxiao Wang, Ying Luo, Yaru Huang, Tingting Jiang, Hongwen Zhao, Qijun Yu, Entao Wang, Jinshui Yang, Hongli Yuan
{"title":"Mutualism between degraders and nondegraders stabilizes the function of a natural biopolymer-degrading community","authors":"Liang Liu, Changfu Tian, Miaoxiao Wang, Ying Luo, Yaru Huang, Tingting Jiang, Hongwen Zhao, Qijun Yu, Entao Wang, Jinshui Yang, Hongli Yuan","doi":"10.1073/pnas.2500664122","DOIUrl":null,"url":null,"abstract":"Natural biopolymer-degrading microbial communities drive carbon biogeochemical cycling. Within these communities, polymer degraders facilitate the growth of nondegraders by breaking down polymers through extracellular enzymes. However, the contributions of nondegraders to community dynamics, as well as the mechanisms that limit their access to degradation products, remain poorly understood. Here, we investigate EMSD5, a lignocellulose-degrading microbial community that efficiently converts corncob into isopropanol. We demonstrate that nondegraders, such as <jats:italic toggle=\"yes\">Escherichia coli</jats:italic> , enable the growth of degraders (e.g., <jats:italic toggle=\"yes\">Lachnoclostridium</jats:italic> sp. and <jats:italic toggle=\"yes\">Clostridium beijerinckii</jats:italic> ) by creating anaerobic conditions and supplying biotin. Within such expanded niches, lignocellulose degradation proceeds sequentially, and the availability of breakdown products to <jats:italic toggle=\"yes\">E</jats:italic> . <jats:italic toggle=\"yes\">coli</jats:italic> is constrained by two interlinked processes. Specifically, <jats:italic toggle=\"yes\">Lachnoclostridium</jats:italic> sp. produces oligosaccharides that are largely inaccessible to <jats:italic toggle=\"yes\">E</jats:italic> . <jats:italic toggle=\"yes\">coli</jats:italic> . A subset of these oligosaccharides is utilized by <jats:italic toggle=\"yes\">C</jats:italic> . <jats:italic toggle=\"yes\">beijerinckii</jats:italic> to produce monosaccharides that support <jats:italic toggle=\"yes\">E</jats:italic> . <jats:italic toggle=\"yes\">coli</jats:italic> growth, while glycosidase secretion by <jats:italic toggle=\"yes\">C</jats:italic> . <jats:italic toggle=\"yes\">beijerinckii</jats:italic> is reduced under coculture conditions. Building on these findings, we designed a synthetic consortium by coculturing <jats:italic toggle=\"yes\">C. beijerinckii</jats:italic> with an engineered <jats:italic toggle=\"yes\">E</jats:italic> . <jats:italic toggle=\"yes\">coli</jats:italic> strain that expresses xylanase genes from an unculturable <jats:italic toggle=\"yes\">Lachnoclostridium</jats:italic> . This consortium achieved isopropanol production from hemicellulose without requiring anaerobic conditions. Our findings reveal the niche-expanding role of nondegraders and the processes that constrain their access to degradation products, offering insights into maintaining stable cooperation in biopolymer-degrading communities and designing efficient consortia for biopolymer conversion.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"12 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2500664122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural biopolymer-degrading microbial communities drive carbon biogeochemical cycling. Within these communities, polymer degraders facilitate the growth of nondegraders by breaking down polymers through extracellular enzymes. However, the contributions of nondegraders to community dynamics, as well as the mechanisms that limit their access to degradation products, remain poorly understood. Here, we investigate EMSD5, a lignocellulose-degrading microbial community that efficiently converts corncob into isopropanol. We demonstrate that nondegraders, such as Escherichia coli , enable the growth of degraders (e.g., Lachnoclostridium sp. and Clostridium beijerinckii ) by creating anaerobic conditions and supplying biotin. Within such expanded niches, lignocellulose degradation proceeds sequentially, and the availability of breakdown products to E . coli is constrained by two interlinked processes. Specifically, Lachnoclostridium sp. produces oligosaccharides that are largely inaccessible to E . coli . A subset of these oligosaccharides is utilized by C . beijerinckii to produce monosaccharides that support E . coli growth, while glycosidase secretion by C . beijerinckii is reduced under coculture conditions. Building on these findings, we designed a synthetic consortium by coculturing C. beijerinckii with an engineered E . coli strain that expresses xylanase genes from an unculturable Lachnoclostridium . This consortium achieved isopropanol production from hemicellulose without requiring anaerobic conditions. Our findings reveal the niche-expanding role of nondegraders and the processes that constrain their access to degradation products, offering insights into maintaining stable cooperation in biopolymer-degrading communities and designing efficient consortia for biopolymer conversion.
降解物和非降解物之间的相互作用稳定了天然生物聚合物降解群落的功能
天然生物聚合物降解微生物群落驱动碳生物地球化学循环。在这些群落中,聚合物降解物通过胞外酶分解聚合物,促进非降解物的生长。然而,非降解生物对群落动态的贡献,以及限制它们获得降解产物的机制,仍然知之甚少。在这里,我们研究了EMSD5,一种有效地将玉米芯转化为异丙醇的木质纤维素降解微生物群落。我们证明,非降解菌,如大肠杆菌,通过创造厌氧条件和提供生物素,使降解菌(如Lachnoclostridium p.和beijerinkii Clostridium)生长。在这种扩大的生态位中,木质纤维素的降解依次进行,分解产物对E。大肠杆菌受到两个相互联系的过程的制约。具体来说,Lachnoclostridium sp.产生的低聚糖在很大程度上是E .无法获得的。杆菌。这些低聚糖的一个子集被C利用。beijerinckii产生单糖,支持E。葡萄糖苷酶的分泌由C。Beijerinckii在共培养条件下被还原。在这些发现的基础上,我们设计了一个合成联合体,通过共培养C. beijerinckii与工程E .。表达来自不可培养的Lachnoclostridium的木聚糖酶基因的大肠杆菌菌株。这个联合体在不需要厌氧条件的情况下实现了从半纤维素生产异丙醇。我们的研究结果揭示了非降解物的生态位扩展作用和限制它们获得降解产物的过程,为维持生物聚合物降解群落的稳定合作和设计有效的生物聚合物转化联盟提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信