{"title":"Genome assembly of two allotetraploid cotton germplasms reveals mechanisms of somatic embryogenesis and enables precise genome editing","authors":"Zhongping Xu, Guanying Wang, Xiangqian Zhu, Ruipeng Wang, Longfu Zhu, Lili Tu, Yuling Liu, Renhai Peng, Keith Lindsey, Maojun Wang, Xianlong Zhang, Shuangxia Jin","doi":"10.1038/s41588-025-02258-3","DOIUrl":null,"url":null,"abstract":"Somatic embryogenesis is crucial for plant genetic engineering, yet the underlying mechanisms in cotton remain poorly understood. Here we present a telomere-to-telomere assembly of Jin668 and a high-quality assembly of YZ1, two highly regenerative allotetraploid cotton germplasms. The completion of the Jin668 genome enables characterization of ~30.1 Mb of centromeric regions invaded by centromeric retrotransposon of maize and Tekay retrotransposons, an ~8.1 Mb 5S rDNA array containing 25,190 copies and a ~75.1 Mb major 45S rDNA array with 8,131 copies. Comparative analyses of regenerative and recalcitrant genotypes reveal dynamic transcriptional patterns and chromatin accessibility during the initial regeneration process. A hierarchical gene regulatory network identifies AGL15 as a contributor to regeneration. Additionally, we demonstrate that genetic variation affects sgRNA target sites, while the Jin668 genome assembly reduces the risk of off-target effects in CRISPR-based genome editing. Together, the complete Jin668 genome reveals the complexity of genomic regions and cotton regeneration, and improves the precision of genome editing. Genome assemblies of two allotetraploid cotton germplasms, Jin668 and YZ1, reveal the regulatory mechanisms underlying somatic embryogenesis and plant regeneration, and provide potential for precise genome editing in cotton.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 8","pages":"2028-2039"},"PeriodicalIF":29.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02258-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Somatic embryogenesis is crucial for plant genetic engineering, yet the underlying mechanisms in cotton remain poorly understood. Here we present a telomere-to-telomere assembly of Jin668 and a high-quality assembly of YZ1, two highly regenerative allotetraploid cotton germplasms. The completion of the Jin668 genome enables characterization of ~30.1 Mb of centromeric regions invaded by centromeric retrotransposon of maize and Tekay retrotransposons, an ~8.1 Mb 5S rDNA array containing 25,190 copies and a ~75.1 Mb major 45S rDNA array with 8,131 copies. Comparative analyses of regenerative and recalcitrant genotypes reveal dynamic transcriptional patterns and chromatin accessibility during the initial regeneration process. A hierarchical gene regulatory network identifies AGL15 as a contributor to regeneration. Additionally, we demonstrate that genetic variation affects sgRNA target sites, while the Jin668 genome assembly reduces the risk of off-target effects in CRISPR-based genome editing. Together, the complete Jin668 genome reveals the complexity of genomic regions and cotton regeneration, and improves the precision of genome editing. Genome assemblies of two allotetraploid cotton germplasms, Jin668 and YZ1, reveal the regulatory mechanisms underlying somatic embryogenesis and plant regeneration, and provide potential for precise genome editing in cotton.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution