Ultrabroad Pressure Sensing, Ultrasensitive, Multi‐Signal Ionogel‐Based Microneedles for Wearable Respiratory Health Monitoring

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tikai Zhang, Bin Sun, Jin Qian, Tianyi Wang, Yushu Zhang, Haijiao Xie, Chen Hua, Zhe Qiang, Jie Ren
{"title":"Ultrabroad Pressure Sensing, Ultrasensitive, Multi‐Signal Ionogel‐Based Microneedles for Wearable Respiratory Health Monitoring","authors":"Tikai Zhang, Bin Sun, Jin Qian, Tianyi Wang, Yushu Zhang, Haijiao Xie, Chen Hua, Zhe Qiang, Jie Ren","doi":"10.1002/adfm.202510723","DOIUrl":null,"url":null,"abstract":"Developing wearable devices with high sensitivity, low‐pressure detection, and multi‐signal monitoring capabilities is critical for the effective diagnosis of respiratory diseases. Here, this work reports a wearable mask that integrates with a printed circuit board (PCB) and Bluetooth Low Energy (BLE) module, in tandem with ionogel‐based microneedle patches (IMN‐1/2) featuring a regularized microarray structure. By leveraging its gradient morphology, IMN‐1/2 achieves a pressure detection limit as low as 0.3 Pa and an ultrahigh sensitivity of 2980.23 kPa⁻¹ in low‐pressure range, enabling the effective monitoring of extremely weak breathing pressure signals. Moreover, hydrophilic <jats:italic>N,N</jats:italic>‐dimethylacrylamide (DMAA) of IMN‐1/2 impart the patches with distinct amphiphilic characteristics that limited swelling while allowing for slow, controlled water absorption. When weakly alkaline exhaled breath condensate (EBC) permeates the IMN‐1/2 structure, it alters the charge state of cationic fluorescent crosslinkers, leading to a reduction in fluorescence intensity; this pH‐responsive behavior facilitated long‐term monitoring and potential diagnosis of respiratory alkalosis. Furthermore, the strong adhesion of IMN‐1/2 enhances the sealing integrity of IMN‐1/2‐integrated masks, physically restricting CO<jats:sub>2</jats:sub> inhalation and reducing arterial blood pH values of wearers, thus enabling physical therapy for respiratory alkalosis. This work demonstrates efficient ultralow‐pressure monitoring, expanding the diagnostic capabilities of piezo‐resistive pressure sensors through structural design.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"14 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202510723","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing wearable devices with high sensitivity, low‐pressure detection, and multi‐signal monitoring capabilities is critical for the effective diagnosis of respiratory diseases. Here, this work reports a wearable mask that integrates with a printed circuit board (PCB) and Bluetooth Low Energy (BLE) module, in tandem with ionogel‐based microneedle patches (IMN‐1/2) featuring a regularized microarray structure. By leveraging its gradient morphology, IMN‐1/2 achieves a pressure detection limit as low as 0.3 Pa and an ultrahigh sensitivity of 2980.23 kPa⁻¹ in low‐pressure range, enabling the effective monitoring of extremely weak breathing pressure signals. Moreover, hydrophilic N,N‐dimethylacrylamide (DMAA) of IMN‐1/2 impart the patches with distinct amphiphilic characteristics that limited swelling while allowing for slow, controlled water absorption. When weakly alkaline exhaled breath condensate (EBC) permeates the IMN‐1/2 structure, it alters the charge state of cationic fluorescent crosslinkers, leading to a reduction in fluorescence intensity; this pH‐responsive behavior facilitated long‐term monitoring and potential diagnosis of respiratory alkalosis. Furthermore, the strong adhesion of IMN‐1/2 enhances the sealing integrity of IMN‐1/2‐integrated masks, physically restricting CO2 inhalation and reducing arterial blood pH values of wearers, thus enabling physical therapy for respiratory alkalosis. This work demonstrates efficient ultralow‐pressure monitoring, expanding the diagnostic capabilities of piezo‐resistive pressure sensors through structural design.
用于可穿戴式呼吸健康监测的超压力传感、超灵敏、多信号离子凝胶微针
开发具有高灵敏度、低压检测和多信号监测功能的可穿戴设备对于有效诊断呼吸系统疾病至关重要。在这里,这项工作报告了一种可穿戴式掩模,该掩模集成了印刷电路板(PCB)和低功耗蓝牙(BLE)模块,以及具有正则化微阵列结构的基于离子凝胶的微针贴片(IMN‐1/2)。利用其梯度形态,IMN‐1/2在低压范围内实现了低至0.3 Pa的压力检测极限和2980.23 kPa(⁻¹)的超高灵敏度,能够有效监测极其微弱的呼吸压力信号。此外,IMN‐1/2的亲水性N,N‐二甲基丙烯酰胺(DMAA)使贴片具有明显的两亲性特征,限制了肿胀,同时允许缓慢、可控的吸水。当弱碱性呼出凝聚物(EBC)渗透到IMN‐1/2结构中时,它改变了阳离子荧光交联剂的电荷状态,导致荧光强度降低;这种pH响应行为有助于长期监测和潜在的呼吸性碱中毒诊断。此外,IMN‐1/2的强附着力增强了IMN‐1/2集成口罩的密封完整性,从物理上限制了二氧化碳的吸入,降低了佩戴者的动脉血液pH值,从而实现了呼吸性碱中毒的物理治疗。这项工作展示了高效的超低压力监测,通过结构设计扩展了压阻式压力传感器的诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信