Superconductivity in quasi-one-dimensional antiferromagnetic CrNbSe5 microwires under high pressure

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-07-22 DOI:10.1016/j.matt.2025.102299
Chen Li, Yiming Wang, Chengyu Li, Ke Liu, Jiajia Feng, Haoming Cheng, En Chen, Dequan Jiang, Qiaoxin Zhang, Ting Wen, Binbin Yue, Wenge Yang, Yonggang Wang
{"title":"Superconductivity in quasi-one-dimensional antiferromagnetic CrNbSe5 microwires under high pressure","authors":"Chen Li, Yiming Wang, Chengyu Li, Ke Liu, Jiajia Feng, Haoming Cheng, En Chen, Dequan Jiang, Qiaoxin Zhang, Ting Wen, Binbin Yue, Wenge Yang, Yonggang Wang","doi":"10.1016/j.matt.2025.102299","DOIUrl":null,"url":null,"abstract":"Exploring potential superconductivity in magnetic compounds stands as a pivotal and challenging frontier issue. Low-dimensional materials, with their distinctive quantum confinement effects, provide an unparalleled platform for probing such quantum phenomena. Here, we present the discovery of pressure-induced superconductivity in novel antiferromagnetic CrNbSe<sub>5</sub> microwires with a distinctive quasi-one-dimensional structure. Under compression, CrNbSe<sub>5</sub> exhibits superconductivity at 15.0 GPa accompanied by carrier-type switching. The superconducting transition temperature reaches a maximum of 6.0 K at 34.2 GPa. Detailed structural analyses and theoretical calculations corroborate the quantum effects arising from Lifshitz transitions. Additionally, phonon softening and enhanced interchain interactions facilitate pressure-induced superconductivity. These findings offer critical insights into the mechanisms underlying pressure-induced superconductivity and its interplay with structural and electronic instabilities, accelerating the discovery of exotic quantum phenomena in low-dimensional van der Waals magnetic materials.","PeriodicalId":388,"journal":{"name":"Matter","volume":"14 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102299","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring potential superconductivity in magnetic compounds stands as a pivotal and challenging frontier issue. Low-dimensional materials, with their distinctive quantum confinement effects, provide an unparalleled platform for probing such quantum phenomena. Here, we present the discovery of pressure-induced superconductivity in novel antiferromagnetic CrNbSe5 microwires with a distinctive quasi-one-dimensional structure. Under compression, CrNbSe5 exhibits superconductivity at 15.0 GPa accompanied by carrier-type switching. The superconducting transition temperature reaches a maximum of 6.0 K at 34.2 GPa. Detailed structural analyses and theoretical calculations corroborate the quantum effects arising from Lifshitz transitions. Additionally, phonon softening and enhanced interchain interactions facilitate pressure-induced superconductivity. These findings offer critical insights into the mechanisms underlying pressure-induced superconductivity and its interplay with structural and electronic instabilities, accelerating the discovery of exotic quantum phenomena in low-dimensional van der Waals magnetic materials.

Abstract Image

高压下准一维反铁磁CrNbSe5微线的超导性
探索磁性化合物的潜在超导性是一个关键而具有挑战性的前沿问题。低维材料具有独特的量子约束效应,为探索此类量子现象提供了无与伦比的平台。在这里,我们在具有独特的准一维结构的新型反铁磁CrNbSe5微线中发现了压力诱导超导性。压缩条件下,CrNbSe5表现出15.0 GPa的超导性,并伴有载流子型开关。在34.2 GPa时超导转变温度最高达到6.0 K。详细的结构分析和理论计算证实了由利夫希茨跃迁引起的量子效应。此外,声子软化和增强的链间相互作用促进了压力诱导的超导性。这些发现为压力诱导超导的机制及其与结构和电子不稳定性的相互作用提供了重要的见解,加速了低维范德华磁性材料中奇异量子现象的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信