Boundary-Lubricated Hydrogels with Load-Bearing Capacity via Microphase Separation Strategy

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-22 DOI:10.1002/smll.202506940
Rui Chen, Jiaqi Feng, Jin Huang, Weifeng Lin, Hao Yan, Hangsheng Zhou, Wei Shi, Ying Li, Longhao Zhang, Hexiang Xu, Yongying Han, Weili Shi, Tianyi Zhao, Mingjie Liu
{"title":"Boundary-Lubricated Hydrogels with Load-Bearing Capacity via Microphase Separation Strategy","authors":"Rui Chen,&nbsp;Jiaqi Feng,&nbsp;Jin Huang,&nbsp;Weifeng Lin,&nbsp;Hao Yan,&nbsp;Hangsheng Zhou,&nbsp;Wei Shi,&nbsp;Ying Li,&nbsp;Longhao Zhang,&nbsp;Hexiang Xu,&nbsp;Yongying Han,&nbsp;Weili Shi,&nbsp;Tianyi Zhao,&nbsp;Mingjie Liu","doi":"10.1002/smll.202506940","DOIUrl":null,"url":null,"abstract":"<p>Lubricating hydrogels show promise as cartilage substitutes but face mechanical fragility (elastic modulus &lt;100 kPa) and fluid-dependent lubrication failure under physiological loads. hydrogels are presented with nanoconfined water via microphase-separated structures, combining hydrogen-bond-stabilized polymer-dense domains and hydrated regions. By tuning hydrated nanopore size (≈10 nm) and enhancing bound water content, these hydrogels achieve boundary lubrication with ultralow friction (coefficient of friction, COF≈0.01) under extreme conditions: contact pressures &gt;10 MPa, velocities spanning 1–100 mm s<sup>−1</sup>. Additionally, hydrogels demonstrate effective lubrication under sub-zero temperatures. The hydrogen bond-reinforced network balances exceptional mechanical properties—compression modulus of 53.8 MPa and fracture energy of 54462.6 J m<sup>−</sup><sup>2</sup>—surpassing conventional hydrogels. Their uniform heterogeneous structure enables self-renewal post-wear, sustaining long-term lubrication. This design decouples mechanical robustness from lubrication sustainability, overcoming the traditional interdependency where mechanical degradation accelerates lubrication failure. By optimizing polymer network topology to regulate water states, load-bearing boundary lubrication is enabled, addressing critical limitations in cartilage-mimetic materials. The strategy offers a pathway for durable hydrogels in biomedical applications requiring simultaneous pressure resistance, velocity adaptability, and environmental resilience.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 36","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202506940","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lubricating hydrogels show promise as cartilage substitutes but face mechanical fragility (elastic modulus <100 kPa) and fluid-dependent lubrication failure under physiological loads. hydrogels are presented with nanoconfined water via microphase-separated structures, combining hydrogen-bond-stabilized polymer-dense domains and hydrated regions. By tuning hydrated nanopore size (≈10 nm) and enhancing bound water content, these hydrogels achieve boundary lubrication with ultralow friction (coefficient of friction, COF≈0.01) under extreme conditions: contact pressures >10 MPa, velocities spanning 1–100 mm s−1. Additionally, hydrogels demonstrate effective lubrication under sub-zero temperatures. The hydrogen bond-reinforced network balances exceptional mechanical properties—compression modulus of 53.8 MPa and fracture energy of 54462.6 J m2—surpassing conventional hydrogels. Their uniform heterogeneous structure enables self-renewal post-wear, sustaining long-term lubrication. This design decouples mechanical robustness from lubrication sustainability, overcoming the traditional interdependency where mechanical degradation accelerates lubrication failure. By optimizing polymer network topology to regulate water states, load-bearing boundary lubrication is enabled, addressing critical limitations in cartilage-mimetic materials. The strategy offers a pathway for durable hydrogels in biomedical applications requiring simultaneous pressure resistance, velocity adaptability, and environmental resilience.

Abstract Image

通过微相分离策略,具有负载能力的边界润滑水凝胶
润滑水凝胶有望成为软骨替代品,但在生理负荷下面临机械脆弱性(弹性模量<; 100kpa)和流体依赖的润滑失效。水凝胶通过微相分离的结构,结合了氢键稳定的聚合物密集域和水合区域,形成了纳米限水。通过调整水合纳米孔尺寸(≈10 nm)和提高结合水含量,这些水凝胶在极端条件下实现了超低摩擦(摩擦系数,COF≈0.01)的边界润滑:接触压力>;10 MPa,速度跨越1 - 100 mm s−1。此外,水凝胶在零下温度下也显示出有效的润滑效果。氢键增强的网络平衡了优异的力学性能——压缩模量为53.8 MPa,断裂能为54462.6 J m−2——超过了传统的水凝胶。其均匀的异质结构能够在磨损后自我更新,保持长期润滑。这种设计将机械的坚固性与润滑的可持续性分离开来,克服了传统的机械退化加速润滑失效的相互依赖性。通过优化聚合物网络拓扑结构来调节水的状态,实现了承载边界润滑,解决了软骨模拟材料的关键限制。该策略为生物医学应用中需要同时具有耐压性、速度适应性和环境弹性的耐用水凝胶提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信