{"title":"Human fetal kidney organoids model early human nephrogenesis and Notch-driven cell fate.","authors":"Michael Namestnikov,Osnat Cohen-Zontag,Dorit Omer,Yehudit Gnatek,Sanja Goldberg,Thomas Vincent,Swati Singh,Yair Shiber,Tal Rafaeli Yehudai,Hadas Volkov,Dani Folkman Genet,Achia Urbach,Sylvie Polak-Charcon,Igor Grinberg,Naomi Pode-Shakked,Boaz Weisz,Zvi Vaknin,Benjamin S Freedman,Benjamin Dekel","doi":"10.1038/s44318-025-00504-2","DOIUrl":null,"url":null,"abstract":"Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00504-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.