Metaplectic cusp forms and the large sieve

IF 1 1区 数学 Q2 MATHEMATICS
Alexander Dunn
{"title":"Metaplectic cusp forms and the large sieve","authors":"Alexander Dunn","doi":"10.2140/ant.2025.19.1823","DOIUrl":null,"url":null,"abstract":"<p>We prove a power saving upper bound for the sum of Fourier coefficients <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo>⋅</mo><mo stretchy=\"false\">)</mo></math> of a fixed cubic metaplectic cusp form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> over primes. Our result is the cubic analogue of a celebrated 1990 theorem of Duke and Iwaniec, and the cuspidal analogue of a theorem due to the author and Radziwiłł for the bias in cubic Gauss sums. </p><p> The proof has two main inputs, both of independent interest. Firstly, we prove a new large sieve estimate for a bilinear form whose kernel function is <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo>⋅</mo><mo stretchy=\"false\">)</mo></math>. The proof of the bilinear estimate uses a number field version of circle method due to Browning and Vishe, Voronoi summation, and Gauss–Ramanujan sums. Secondly, we use Voronoi summation and the cubic large sieve of Heath-Brown to prove an estimate for a linear form involving <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo>⋅</mo><mo stretchy=\"false\">)</mo></math>. Our linear estimate overcomes a bottleneck occurring at level of distribution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>2</mn></mrow>\n<mrow><mn>3</mn></mrow></mfrac></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1823","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a power saving upper bound for the sum of Fourier coefficients ρf() of a fixed cubic metaplectic cusp form f over primes. Our result is the cubic analogue of a celebrated 1990 theorem of Duke and Iwaniec, and the cuspidal analogue of a theorem due to the author and Radziwiłł for the bias in cubic Gauss sums.

The proof has two main inputs, both of independent interest. Firstly, we prove a new large sieve estimate for a bilinear form whose kernel function is ρf(). The proof of the bilinear estimate uses a number field version of circle method due to Browning and Vishe, Voronoi summation, and Gauss–Ramanujan sums. Secondly, we use Voronoi summation and the cubic large sieve of Heath-Brown to prove an estimate for a linear form involving ρf(). Our linear estimate overcomes a bottleneck occurring at level of distribution 2 3.

变形尖形和大筛子
我们证明了上素数的定三次元聚尖形式的傅里叶系数和ρf(⋅)的一个省电上界。我们的结果是Duke和Iwaniec 1990年著名定理的三次类似,以及作者和Radziwiłł关于三次高斯和偏差的一个定理的cuspidal类似。这个证明有两个主要的输入,都是独立的。首先,我们证明了核函数为ρf(⋅)的双线性形式的一个新的大筛估计。双线性估计的证明使用了基于Browning和Vishe、Voronoi求和和gaas - ramanujan和的数域版圆法。其次,我们利用Voronoi求和和Heath-Brown的三次大筛证明了一个涉及到ρf(⋅)的线性形式的估计。我们的线性估计克服了发生在分布水平23的瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信