Prismatic G-displays and descent theory

IF 1 1区 数学 Q2 MATHEMATICS
Kazuhiro Ito
{"title":"Prismatic G-displays and descent theory","authors":"Kazuhiro Ito","doi":"10.2140/ant.2025.19.1685","DOIUrl":null,"url":null,"abstract":"<p>For a smooth affine group scheme <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> over the ring of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic integers <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> and a cocharacter <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>, we study <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>-displays over the prismatic site of Bhatt and Scholze. In particular, we obtain several descent results for them. If <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi>\n<mo>=</mo><msub><mrow><mi> GL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub></math>, then our <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>-displays can be thought of as Breuil–Kisin modules with some additional conditions. The relation between our <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>-displays and prismatic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>-gauges introduced by Drinfeld and Bhatt–Lurie is also discussed. </p><p> In fact, our main results are formulated and proved for smooth affine group schemes over the ring of integers <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math> of any finite extension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> by using <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math>-prisms, which are <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math>-analogues of prisms. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1685","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a smooth affine group scheme G over the ring of p-adic integers p and a cocharacter μ of G, we study G-μ-displays over the prismatic site of Bhatt and Scholze. In particular, we obtain several descent results for them. If G = GL n, then our G-μ-displays can be thought of as Breuil–Kisin modules with some additional conditions. The relation between our G-μ-displays and prismatic F-gauges introduced by Drinfeld and Bhatt–Lurie is also discussed.

In fact, our main results are formulated and proved for smooth affine group schemes over the ring of integers 𝒪E of any finite extension E of p by using 𝒪E-prisms, which are 𝒪E-analogues of prisms.

棱镜g显示和下降理论
对于p进整数环上的光滑仿射群方案G和G的协字符μ,研究了G-μ在Bhatt和Scholze的棱镜位上的显示。特别地,我们得到了它们的几个下降结果。如果G= GL n,则我们的G μ显示器可以被认为是带有一些附加条件的Breuil-Kisin模块。本文还讨论了G μ显示器与Drinfeld和bhattu - lurie引入的棱镜f规之间的关系。实际上,对于任意有限扩展E的整数环𝒪E上的光滑仿射群格式,我们用𝒪E-prisms给出了我们的主要结果,这是棱镜的𝒪E-analogues。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信