{"title":"Prismatic G-displays and descent theory","authors":"Kazuhiro Ito","doi":"10.2140/ant.2025.19.1685","DOIUrl":null,"url":null,"abstract":"<p>For a smooth affine group scheme <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> over the ring of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic integers <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> and a cocharacter <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>, we study <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>-displays over the prismatic site of Bhatt and Scholze. In particular, we obtain several descent results for them. If <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi>\n<mo>=</mo><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub></math>, then our <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>-displays can be thought of as Breuil–Kisin modules with some additional conditions. The relation between our <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>-displays and prismatic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>-gauges introduced by Drinfeld and Bhatt–Lurie is also discussed. </p><p> In fact, our main results are formulated and proved for smooth affine group schemes over the ring of integers <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math> of any finite extension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> by using <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math>-prisms, which are <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math>-analogues of prisms. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1685","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a smooth affine group scheme over the ring of -adic integers and a cocharacter of , we study --displays over the prismatic site of Bhatt and Scholze. In particular, we obtain several descent results for them. If , then our --displays can be thought of as Breuil–Kisin modules with some additional conditions. The relation between our --displays and prismatic -gauges introduced by Drinfeld and Bhatt–Lurie is also discussed.
In fact, our main results are formulated and proved for smooth affine group schemes over the ring of integers of any finite extension of by using -prisms, which are -analogues of prisms.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.