Rajni Agarwal, Alice Bertaina, Charmaine Soco, Janel R. Long-Boyle, Gopin Saini, Nivedita Kunte, Lyndsie Hiroshima, Yan Y. Chan, Hana Willner, Mark R. Krampf, Rofida Nofal, Giulia Barbarito, Sushmita Sen, Maite Van Hentenryck, Emily Walck, Amelia Scheck, Rhonda J. Perriman, Alisha Bouge, Elena Istomina, Hena Naz Din, Edna F. Klinger, Jerry C. Cheng, Marcin W. Wlodarski, Jaap J. Boelens, Judith A. Shizuru, Wendy W. Pang, Kenneth Weinberg, Robertson Parkman, Maria Grazia Roncarolo, Matthew Porteus, Agnieszka Czechowicz
{"title":"Irradiation- and busulfan-free stem cell transplantation in Fanconi anemia using an anti-CD117 antibody: a phase 1b trial","authors":"Rajni Agarwal, Alice Bertaina, Charmaine Soco, Janel R. Long-Boyle, Gopin Saini, Nivedita Kunte, Lyndsie Hiroshima, Yan Y. Chan, Hana Willner, Mark R. Krampf, Rofida Nofal, Giulia Barbarito, Sushmita Sen, Maite Van Hentenryck, Emily Walck, Amelia Scheck, Rhonda J. Perriman, Alisha Bouge, Elena Istomina, Hena Naz Din, Edna F. Klinger, Jerry C. Cheng, Marcin W. Wlodarski, Jaap J. Boelens, Judith A. Shizuru, Wendy W. Pang, Kenneth Weinberg, Robertson Parkman, Maria Grazia Roncarolo, Matthew Porteus, Agnieszka Czechowicz","doi":"10.1038/s41591-025-03817-1","DOIUrl":null,"url":null,"abstract":"<p>Current hematopoietic stem cell transplantation (HSCT) conditioning strategies cause widespread tissue damage and systemic toxicities, especially in patients with DNA-repair deficiencies such as Fanconi anemia (FA). We have developed an alternative conditioning approach that incorporates the anti-CD117 antibody, briquilimab, which targets host hematopoietic stem and progenitor cells in place of genotoxic irradiation- and busulfan-based chemotherapy. Here we report a phase 1b clinical trial in patients with FA and bone marrow failure, evaluating safety and efficacy of briquilimab-based conditioning in combination with rabbit anti-thymocyte globulin, cyclophosphamide, fludarabine and rituximab immunosuppression and T cell receptor (TCR)αβ<sup>+</sup> T cell-depleted and CD19<sup>+</sup> B cell-depleted haploidentical HSCT. Primary endpoints of the trial included safety and engraftment, and secondary endpoints included pharmacokinetic measures and hematological and immunological recovery. All three patients have each undergone 2 years of follow-up to complete the phase 1b analysis. No treatment-emergent adverse events or acute graft-versus-host disease was observed. Patients experienced minimal toxicities, with typical mucositis and no veno-occlusive disease. Median neutrophil engraftment was 11 days (range 11–13 days) with robust donor chimerism up to 2 years post-HSCT (99–100%), meeting the primary endpoints of the study. Briquilimab cleared in each patient before HSCT without the need for adjustment. Red blood cell, platelet and lymphocyte recovery was comparable to previous reports with TCRαβ<sup>+</sup> T cell-depleted and CD19<sup>+</sup> B cell-depleted grafts. All patients are alive and well with resolution of earlier chromosomal breakage abnormalities in peripheral blood lymphocytes post treatment. These data demonstrate the broad potential of this protocol in maintaining HSCT efficacy while reducing toxicity. The phase 2 trial is ongoing (ClinicalTrials.gov identifier: NCT04784052).</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"34 1","pages":""},"PeriodicalIF":50.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-025-03817-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current hematopoietic stem cell transplantation (HSCT) conditioning strategies cause widespread tissue damage and systemic toxicities, especially in patients with DNA-repair deficiencies such as Fanconi anemia (FA). We have developed an alternative conditioning approach that incorporates the anti-CD117 antibody, briquilimab, which targets host hematopoietic stem and progenitor cells in place of genotoxic irradiation- and busulfan-based chemotherapy. Here we report a phase 1b clinical trial in patients with FA and bone marrow failure, evaluating safety and efficacy of briquilimab-based conditioning in combination with rabbit anti-thymocyte globulin, cyclophosphamide, fludarabine and rituximab immunosuppression and T cell receptor (TCR)αβ+ T cell-depleted and CD19+ B cell-depleted haploidentical HSCT. Primary endpoints of the trial included safety and engraftment, and secondary endpoints included pharmacokinetic measures and hematological and immunological recovery. All three patients have each undergone 2 years of follow-up to complete the phase 1b analysis. No treatment-emergent adverse events or acute graft-versus-host disease was observed. Patients experienced minimal toxicities, with typical mucositis and no veno-occlusive disease. Median neutrophil engraftment was 11 days (range 11–13 days) with robust donor chimerism up to 2 years post-HSCT (99–100%), meeting the primary endpoints of the study. Briquilimab cleared in each patient before HSCT without the need for adjustment. Red blood cell, platelet and lymphocyte recovery was comparable to previous reports with TCRαβ+ T cell-depleted and CD19+ B cell-depleted grafts. All patients are alive and well with resolution of earlier chromosomal breakage abnormalities in peripheral blood lymphocytes post treatment. These data demonstrate the broad potential of this protocol in maintaining HSCT efficacy while reducing toxicity. The phase 2 trial is ongoing (ClinicalTrials.gov identifier: NCT04784052).
期刊介绍:
Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors.
Nature Medicine consider all types of clinical research, including:
-Case-reports and small case series
-Clinical trials, whether phase 1, 2, 3 or 4
-Observational studies
-Meta-analyses
-Biomarker studies
-Public and global health studies
Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.