{"title":"γ-Ray irradiated polyacrylamide networks enable high-performance Li||S pouch cells","authors":"Zhijuan Zou, Pengfei Liu, Ruiyang Dou, Kaijun Liu, Yunlong Wang, Lixian Song, Liping Tong, Guolu Yin, Wenbin Kang, Wenlong Cai, Yaping Zhang, Hongbing Chen, Yingze Song","doi":"10.1038/s41467-025-61942-4","DOIUrl":null,"url":null,"abstract":"<p>Binders are essential for maintaining positive electrode integrity in Li||S batteries and significantly affect their performance. However, commercial linear binders often have disordered networks, poor binding efficiency, and insufficient mechanical strength. To address these challenges, three-dimensional covalent binders offer a promising solution. Traditional methods for producing cross-linked binders require additives and result in poorly controlled polymer networks due to the stochastic nature of liquid-phase polymerization. Moreover, the mechanisms by which reticulated binders stabilize the positive electrode remain unclear, requiring investigation under operando conditions. Herein, we present an approach to tailor cross-linked polyacrylamide networks using solid-state operando γ-ray irradiation chemistry, which eliminates additives and produces a pure, ordered network with remarkable binding capabilities. By integrating in situ high-resolution optical frequency domain reflectometry, multiscale synchrotron radiation characterization, and virtual simulations, this study reveals the role of binders in dynamically encaging and confining sulfur. Specifically, γ-ray-enabled polyacrylamide networks enhance battery performance through mechanical strengthening, optimized sulfur regeneration, and improved re-occupancy. Consequently, the well-designed composite positive electrode structure with only 5.0 wt% binder improves soft-packaged Li||S battery performance across various scenarios. Notably, a 1.2-Ah pouch cell achieves 410.1 Wh kg<sup>−1</sup> specific energy with a low electrolyte/sulfur ratio of 3.0 µL mg<sup>–1</sup>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61942-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Binders are essential for maintaining positive electrode integrity in Li||S batteries and significantly affect their performance. However, commercial linear binders often have disordered networks, poor binding efficiency, and insufficient mechanical strength. To address these challenges, three-dimensional covalent binders offer a promising solution. Traditional methods for producing cross-linked binders require additives and result in poorly controlled polymer networks due to the stochastic nature of liquid-phase polymerization. Moreover, the mechanisms by which reticulated binders stabilize the positive electrode remain unclear, requiring investigation under operando conditions. Herein, we present an approach to tailor cross-linked polyacrylamide networks using solid-state operando γ-ray irradiation chemistry, which eliminates additives and produces a pure, ordered network with remarkable binding capabilities. By integrating in situ high-resolution optical frequency domain reflectometry, multiscale synchrotron radiation characterization, and virtual simulations, this study reveals the role of binders in dynamically encaging and confining sulfur. Specifically, γ-ray-enabled polyacrylamide networks enhance battery performance through mechanical strengthening, optimized sulfur regeneration, and improved re-occupancy. Consequently, the well-designed composite positive electrode structure with only 5.0 wt% binder improves soft-packaged Li||S battery performance across various scenarios. Notably, a 1.2-Ah pouch cell achieves 410.1 Wh kg−1 specific energy with a low electrolyte/sulfur ratio of 3.0 µL mg–1.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.