Intermolecular Coulombic decay in liquid water competes with proton transfer and non-adiabatic relaxation

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Pengju Zhang, Joel Trester, Jakub Dubský, Přemysl Kolorenč, Petr Slavíček, Hans Jakob Wörner
{"title":"Intermolecular Coulombic decay in liquid water competes with proton transfer and non-adiabatic relaxation","authors":"Pengju Zhang, Joel Trester, Jakub Dubský, Přemysl Kolorenč, Petr Slavíček, Hans Jakob Wörner","doi":"10.1038/s41467-025-61912-w","DOIUrl":null,"url":null,"abstract":"<p>Despite decades of research, our understanding of radiation damage in aqueous systems remains limited. The recent discovery of Intermolecular Coulombic Decay (ICD) following inner-valence ionization of liquid water raises interesting questions about its efficiency as a major source of low-energy electrons responsible for radiation damage. To investigate, we performed electron-electron coincidence measurements on liquid H<sub>2</sub>O and D<sub>2</sub>O using a monochromatized high-harmonic-generation light source, detecting ICD electrons in coincidence with photoelectrons from the 2a<sub>1</sub> shell. We find that the ICD efficiency γ is below unity in both liquids and that γ(H<sub>2</sub>O)/γ(D<sub>2</sub>O) = 0.86 ± 0.03. Ab initio calculations reveal that ICD competes with proton transfer and non-adiabatic relaxation, which can close the ICD channel. A multi-scale stochastic model incorporating solvent effects reproduces these efficiencies. Our combined experimental and theoretical results suggest that the higher ICD efficiency in D<sub>2</sub>O arises from slower proton transfer and non-adiabatic transitions, highlighting the crucial role of nuclear motion in liquid-phase ICD and advancing the understanding of radiation damage.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"662 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61912-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite decades of research, our understanding of radiation damage in aqueous systems remains limited. The recent discovery of Intermolecular Coulombic Decay (ICD) following inner-valence ionization of liquid water raises interesting questions about its efficiency as a major source of low-energy electrons responsible for radiation damage. To investigate, we performed electron-electron coincidence measurements on liquid H2O and D2O using a monochromatized high-harmonic-generation light source, detecting ICD electrons in coincidence with photoelectrons from the 2a1 shell. We find that the ICD efficiency γ is below unity in both liquids and that γ(H2O)/γ(D2O) = 0.86 ± 0.03. Ab initio calculations reveal that ICD competes with proton transfer and non-adiabatic relaxation, which can close the ICD channel. A multi-scale stochastic model incorporating solvent effects reproduces these efficiencies. Our combined experimental and theoretical results suggest that the higher ICD efficiency in D2O arises from slower proton transfer and non-adiabatic transitions, highlighting the crucial role of nuclear motion in liquid-phase ICD and advancing the understanding of radiation damage.

Abstract Image

液态水的分子间库仑衰变与质子转移和非绝热弛豫相竞争
尽管经过了几十年的研究,我们对水系统中的辐射损伤的理解仍然有限。最近在液态水的内价电离后发现的分子间库仑衰变(ICD)提出了一个有趣的问题,即它作为负责辐射损伤的低能电子的主要来源的效率。为了进行研究,我们使用单色化高谐波光源对液态H2O和D2O进行了电子-电子重合测量,检测到ICD电子与来自2a1壳层的光电子重合。结果表明,两种液体的ICD效率γ均低于1,γ(H2O)/γ(D2O) = 0.86±0.03。从头计算表明,ICD与质子转移和非绝热弛豫相互竞争,可以关闭ICD通道。一个包含溶剂效应的多尺度随机模型再现了这些效率。我们的实验和理论结合结果表明,D2O中较高的ICD效率源于较慢的质子转移和非绝热跃迁,突出了核运动在液相ICD中的关键作用,并推进了对辐射损伤的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信