{"title":"Age mosaic of gut epithelial cells prevents aging","authors":"Peizhong Qin, Qi Wang, You Wu, Qiqi You, Mingyu Li, Zheng Guo","doi":"10.1038/s41467-025-62043-y","DOIUrl":null,"url":null,"abstract":"<p>Improving gut health by altering the activity of intestinal stem cells is thought to have the potential to reverse aging. The aged <i>Drosophila</i> midgut undergoes hyperplasia and barrier dysfunction. However, it is still unclear how to limit hyperplasia to extend lifespan. Here, we show that early midgut injury prevents the abrupt onset of aging hyperplasia and extends lifespan in flies. Daily transcriptome profiling and lineage tracing analysis show that the abrupt onset of aging hyperplasia is due to the collective turnover of developmentally generated “old” enterocytes (ECs). Early injury introduces new ECs into the old EC population, forming the epithelial age mosaic. Age mosaic avoids collective EC turnover and facilitates septate junction formation, thereby improving the epithelial barrier and extending lifespan. Furthermore, we found that intermittent time-restricted feeding benefits health by creating an EC age mosaic. Our findings suggest that age mosaic may become a therapeutic approach to reverse aging.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62043-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Improving gut health by altering the activity of intestinal stem cells is thought to have the potential to reverse aging. The aged Drosophila midgut undergoes hyperplasia and barrier dysfunction. However, it is still unclear how to limit hyperplasia to extend lifespan. Here, we show that early midgut injury prevents the abrupt onset of aging hyperplasia and extends lifespan in flies. Daily transcriptome profiling and lineage tracing analysis show that the abrupt onset of aging hyperplasia is due to the collective turnover of developmentally generated “old” enterocytes (ECs). Early injury introduces new ECs into the old EC population, forming the epithelial age mosaic. Age mosaic avoids collective EC turnover and facilitates septate junction formation, thereby improving the epithelial barrier and extending lifespan. Furthermore, we found that intermittent time-restricted feeding benefits health by creating an EC age mosaic. Our findings suggest that age mosaic may become a therapeutic approach to reverse aging.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.